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Abstract. In this work a brief study of the singularities of the Hamilton-Jacobi
equation is made in order to identify the different types of developments in series
when a resonant occurs. The study is based in a application of the Weierstrass
Preparation Theorem (Goursat, 1916) which defines cyclic system of roots and their
corresponding Puiseux Series (Valiron, 1950; Dieudonné, 1971).
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1. Introduction

The first step in a application of a perturbation theory is the assump-
tion that the functions involved may be expanded in power series of
certain parameter, which is considered small. It is well known that if
the problem is non resonant the series (even in the case of divergent
series) are assumed in integer powers of this parameter. In the restricted
three body problem, this parameter is the Jupiter mass. When a res-
onant occur, the expansions are not in integer power, but in square
root (Poincaré, 1892) or in cubic root of the parameter (Ferraz-Mello,
1985a, 1985b). The question is how to determine which type of the
development is necessary to use. The aim of this article is obtain the
conditions for each type depending on model of resonance adopt.

2. Expansions about singular points of a algebraic equation

2.1. THE WEIERSTRASS PREPARATION THEOREM

Theorem (Weierstrass): Let F(x,e) be a analytical function on the
complex variables x,e so that F(0,0) = 0. Let us consider that F may
be expressed in the series:

F(z,e) = Ao+ A1(e)z + ... + +An(e)z" + ... (1)

where each coefficient A; is a power series in €. If for e = 0 the equation
F(z,0) =0 has z = 0 as root of multiplicity k, then, F(x,e) may be
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factorized as
F(z,e) = [2* + oap_1(e)z® T + ... + a1 (e)x + ]G (, €) (2)

where the functions aj(e) are analytical functions on €, a;(0) =0 and
the function G satisfies G(0,0) # 0.
The demonstration may be founded in Goursat (1916).

2.2. CRITICAL POINTS. PUISEUX SERIES

T search solutions in Puiseux series let us study the roots of the equa-
tion F'(z,0) = 0. In a neighborhood of the origin in the complex plane,
the roots of eqn. (2) are the roots of the equation z¥ + ay_1(e)zF 1 +
.. + a1(e)z + ap = 0. Consider D € C a domain which contain the
origin (of the variable ). For any value of € € D, say, ¢y we go to study
the behavior of the roots of eqn. (2) by changing of £y, considered as a
parameter.

Let 29,29, ...,z are the roots of the eqn.(2) for a certain . Con-
sider the one-parameter transformation ¢ : C x [0,k] — C defined
by:

(€0,1) — g0 exp(i2nl), 0<I<k (3)

The eqn. (2) is transformed in

¥ 4oy (g0 exp(i2nl))zF L.+ a1 (€0 exp(i27]) ) z4ap (g9 exp(i2nl)) =
(4)

Now, the upper-scripts 0 indicate the roots for [ = 0. It is evident
that for integer values of [ the roots remain the same, our problem
consist in consider the change in z by changing [ continuously.

Let us introduce the following notation: Let z]* be the r — th root
of the equation (4) for I = m. A result of theory of functions is that for
each r fixed, z]"* is a continuous function in the parameter m.

Definition: Consider the equation z* + a1 (€)x* =1 + ... + a1 (e)r +
o = 0. A subset of roots Sy, = {29,29,..,2%,,} € C, m < k form a
cyclic system of order m if and only if z7" = x?. From this definition
we can to state the following Lemma.

Lemma (Goursat): The roots of the equation z* + ap_q(e)zF~1 +
..+ a1(e)z + ag = 0 which are nulls for e =0 form one or more cyclic
systems in the neighborhood of the origin.

Each cyclic system has a unique Puiseux series: If we change €y = 52{”
after one loop about the origin (in the primed variable) return to the
same value in gg. Since the root considered is in S, the root after
the loop return to the same value. This means that the each root as
function on €’ is a unevaluated and has a development
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where z represent a element of S,,. If we return to ey, we obtain
SV
j/m
z=) gy (6)
j=0

which is the Puiseux series for each element of S,,.

To determine in a practical form how cyclic system are, we have the
proposition.

Proposition: A polynomial P(x) € C[[z]] in the annulus of the poly-
nomial with analytical coefficients has only one cyclic system if and
only if it is irreducible

3. Application to the resonant-restricted three body
Problem

3.1. RESONANT VARIABLES

In order to apply the precedent results we consider an asteroid moving
around the Sun in a (p + 1) : p mean-motion resonance whit Jupiter.
Consider the resonant variables (Ferraz-Mello, 1987):

Oh=@p@P+DA;j—p\—w Ji=L-G
92:(p+1))\J—p)\—’WJ J2:G+%A (7)
O3 =A—)\J J3=(p+1)L+T%A

where \,w are the mean longitude and perihelion respectively. The
subscript indicate Jupiter. n; is the mean motion of Jupiter; L, G are
the usual planar Delaunay variables and A is the momenta associated
to the Ay in the extended phase space.

3.2. PENDULUM MODEL: POWERS IN SQUARE ROOT IN THE
JUPITER MASS

After the first averaging over the fast angle 03 the Hamiltonian may
be expanded about a reference value of J3 which is a constant. If we

choose J3 = Lyesonant- Since L—J5 = —p(J; +J5) the expansion result:
2 2 % ¢
p B (1) ;
H = — — _E =o' (JT + J5)" 8
0 2(J§)2 9 = J??_H p( 1 + 2) ( )

— ngJs —g5J5 —eR
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For the application of the resonant perturbation theory (Ferraz-
Mello, 1997) we separate the term that contains the slow angle #; and
we can write:

, 1 2 (4+1) .,
F} = 51/1152 — &Ry cosf; — a Z (J??H)ngz —eAR (9)

where & = Jf + J;
The Hamilton-Jacobi equation becomes in the algebraic equation

1 2 00 (1]
Fg(faf)z51/1152—5}2100501—'”— (i+1)

2+1
2 1=3 Jé

p'et —eAR =0, (10)

which satisfies Fj(£,e) =0
Since F(£,0) = 0 has £ = 0 as root with multiplicity 2 and not
depend on power greater than 2 in €, we can write the equation

F(¢e) = (€ +be)G(¢,e) (11)
Following Valiron (1951) and Dieudonné (1971) we can write
efc =&+ (), (12)

and in a neighborhood of the origin we can write:

£= €/C+>\2< e/c>2+...+/\n( 8/c)n—|—... (13)

Which is equivalent to say £ = O(+/€). This result permit to search the
generating functions as series of power of the square root of the Jupiter
mass.

3.3. ANDOYER MODEL: POWERS IN CUBIC ROOT IN THE JUPITER
MASS

In some cases, when the eccentricity of the asteroid is small, we can
to approximate the momentum J; = Le?/2 or e = /2J;/L (Ferraz-
Mello, 1987). With this approximation the main resonant part of the
Hamiltonian may be written:

Fy=af’+¢ (\/2J1 cos 01 + B cos 92) + higher orders (14)

If we use the Sessin’s Integral G (for a complete description see Ferraz-
Mello, 1987) the new variables are

© = arctan(H/K)
J = %(KZJFH?) (15)
G=Jh+J-T=0()
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where K = /2J; cos8; + Bejcosbly, H = /2J;sinb; + Beysinfy. In
this variables, the Hamiltonian may be written as

Fy = aGJ +aJ? + ev2J cos © + higher orders (16)
Let z = v/2J , the Hamilton-Jacobi equation take the form:
F = az® + bz + epz + O(ez?) =0 (17)

i contains the cosine and coefficient. Divided the equation by z we
obtain F' = azx + bz + ey + O(ex) = 0. Remember that ¢ = O(§€) and
we can note that F'(0,0) = 0. The equation F(z,0) = 0 has z = 0 as
root with multiplicity 3. By application of the Weierstrass Preparation
Theorem we can put:

F = (2° + as(e)z® + en(e)z + ao(€))G () (18)

Rest to proof that the polynomial z3 + az(e)z? + a1 (e)z + ag(e) is
irreducible.
To proof this, we can use that a = O(z?) and substitute in the
equation, obtain:
F=ar®+ep+0(x)=0 (19)

In a neighborhood of the origin we can write:

(5)" = et + 6 (20)

a

and in analogous way follow Valiron (1951) or Dieudonné (1971) we ob-
tain the Puiseux series for the second Fundamental Model of resonance
(Henrard & Lemaitre 1982; Ferraz-Mello, 1985a,1985b)

1/3 2/3
x:(%) + X (5) .y (21)

Return to relation z = /27 we obtain that J = O(£?/3) which permit
to assume the generating functions expanded in powers of 2/3.

4. Conclusion

This paper presents a method to obtain the differents developments
in series when a resonance occurs. It is based in the application of
the Weierstrass Preparation Theorem which permits to determine the
type of development may be used depending on the integrable model
describe the resonance.
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