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ABSTRACT

It is known from the potential theory that a continuous and
planar layer of dipoles can exactly reproduce the total-field
anomaly produced by arbitrary 3D sources. We have proven
the existence of an equivalent layer having an all-positive mag-
netic-moment distribution for the case in which the magnetiza-
tion direction of this layer is the same as that of the true sources,
regardless of whether the magnetization of the true sources is
purely induced or not. By using this generalized positivity con-
straint, we have developed a new iterative method for estimating
the total magnetization direction of 3D magnetic sources based
on the equivalent-layer technique. Our method does not impose
a priori information about the shape or the depth of the sources,
does not require regularly spaced data, and presumes that the
sources have a uniform magnetization direction. At each

iteration, our method performs two steps. The first step solves a
constrained linear inverse problem to estimate a positive mag-
netic-moment distribution over a discrete equivalent layer of di-
poles. We consider that the equivalent sources are located on a
plane and have a uniform and fixed magnetization direction. In
the second step, we use the estimated magnetic-moment distri-
bution and solve a nonlinear inverse problem for estimating a
new magnetization direction for the dipoles. The algorithm
stops when the equivalent layer yields a total-field anomaly that
fits the observed data. Tests with synthetic data simulating dif-
ferent geologic scenarios show that the final estimated magneti-
zation direction is close to the true one. We apply our method to
field data from the Goiás alkaline province, over the Montes
Claros complex, in the center of Brazil. The results suggest
the presence of intrusions with remarkable remanent magneti-
zation, in agreement with the current literature for this region.

INTRODUCTION

Most magnetic methods require knowledge of the magnetization
direction and otherwise yield unsatisfactory interpretations of the
exploration targets. This fact has propelled the development of sev-
eral techniques for estimating magnetization direction over the past
50 years. Strategies for estimating this quantity can be divided into
two main groups. The first one comprises the methods that presume
a priori information about the shape of geologic sources. The iter-
ative method presented by Bhattacharyya (1966) presumes that the
magnetic source has a rectangular prismatic shape. Emilia and Mas-
sey (1974) approximate a seamount by a set of stacked prisms with
uniform magnetization direction and variable magnetization inten-
sity. Parker et al. (1987) represent the geometry of a seamount by
using a covering of triangular facets and estimate the internal mag-
netization closest to a uniform solution. Medeiros and Silva (1995)

present a method that estimates the total magnetization direction
and the spatial orientation of an isolated source having three
orthogonal planes of symmetry. Ryuji and Uchiyama (2005) also
approximate a seamount by a set of juxtaposed prisms, but they
estimate a magnetization direction for each one. Finally, Oliveira
et al. (2015) approximate the magnetic sources by spherical bodies
with known centers for estimating their magnetization directions.
The second group is formed by methods that do not presume any

information about the shape of the magnetic sources. Fedi et al.
(1994), for example, propose a method that determines the best
magnetization direction among a set of tentative values used to per-
form successive reductions to the pole (RTPs) in the Fourier do-
main. Phillips (2005) uses Helbig’s integral for estimating the
components of the magnetic-moment vector. Caratoni Tontini
and Pedersen (2008) extend the Phillips’ method by using the same
Helbig’s integral to estimate the magnetization direction and its
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magnitude, also providing information about the position of the
center of magnetization distribution. Lelièvre and Oldenburg
(2009) develop a method for estimating the magnetization direction
in complex geologic scenarios. Their method approximates the sub-
surface by a grid of juxtaposed prisms and estimates the compo-
nents of the magnetization vector for each prism. In addition,
there are methods based on the correlation of potential-field quan-
tities (Dannemiller and Li, 2006; Gerovska et al., 2009; Liu et al.,
2015; Zhang et al., 2018; Ribeiro-Filho et al., 2020).
Estimating the magnetization direction is extremely important

not only for interpretation but also for processing the total-field
anomaly data. One technique in the spatial domain commonly used
for processing potential-field data is the equivalent layer. It was first
introduced in exploration geophysics by Dampney (1969) and
Emilia andMassey (1974) for processing gravity and magnetic data,
respectively. After these pioneering works, this technique has been
widely used for computing interpolation (Cordell, 1992; Mendonça
and Silva, 1994; Barnes and Lumley, 2011; Siqueira et al., 2017),
upward (or downward) continuation (Cribb, 1976; Hansen and
Miyazaki, 1984; Li and Oldenburg, 2010; Mastellone et al.,
2014), RTP (Silva, 1986; Leão and Silva, 1989; Guspí and Novara,
2009; Oliveira Jr. et al., 2013), the amplitude of the anomalous field
(Li and Li, 2014), and for denoising gradient data (Martinez and Li,
2016). The equivalent-layer technique consists of approximating
the observed data by those produced by a layer of discrete sources
(e.g., prisms, dipoles, or point masses), which are commonly known
as equivalent sources. The data produced by this fictitious layer (the
equivalent layer) are commonly called predicted data.
In scanning magnetic microscopy, the equivalent-layer technique

is generally used for interpreting the magnetic-moment distribution
within thin planar sections of rock samples. Note that, in this case, the
equivalent layer resembles the true source (a thin section of rock).
Weiss et al. (2007) present one of the first works using the equiva-
lent-layer technique in scanning magnetic microscopy. They point
out without proof that the estimated magnetic-moment distribution
on the layer is all-positive when the magnetization direction of the
equivalent sources is equal to that used for artificially magnetizing
the rock sample. Baratchart et al. (2013) show mathematically that,
assuming a uniform magnetization direction within the thin section,
the inverse problem of estimating the magnetic-moment distribution
has a unique solution. Lima et al. (2013) propose a method in the
frequency domain to investigate solutions having a uniform magneti-
zation direction equal to that of a thin section of a geologic sample.
They show empirically that, in this case, the estimated magnetic-mo-
ment distribution on the layer is entirely positive.
In geophysical exploration, the equivalent-layer technique is pre-

dominantly used for processing potential-field data. Under this per-
spective, there is no relationship between the physical-property
distribution on the equivalent layer and the true geologic sources.
Hence, the layer is just a mathematical abstraction devoid of geo-
logic meaning. Few authors in the geophysical exploration literature
have addressed the use of the equivalent-layer technique for inter-
preting geologic sources. Pedersen (1991), for example, discusses
the relationship between the potential field and the equivalent
source. Medeiros and Silva (1996) and Silva et al. (2010) estimate
an apparent-magnetization map on a layer by using Tikhonov and
entropic regularizations, respectively. Siqueira et al. (2017) estab-
lish a relationship between the excess of mass estimated over the
equivalent layer and the true one. Li et al. (2014) prove, by using

a Fourier-domain approach, the existence of an all-positive mag-
netic-moment distribution over the layer and use this to overcome
the RTP low-latitude instability. However, this work considers only
the particular case in which the magnetic sources have a purely in-
duced magnetization.
Here, we prove mathematically that there exists an all-positive

magnetic-moment distribution within the equivalent layer even in
the presence of geologic sources with remanent magnetization. This
all-positive magnetic-moment distribution exists for all cases in
which the magnetization directions of the equivalent sources have
the same orientation as that of the true geologic sources, regardless
of whether the magnetization of the true sources is purely induced or
not. Grounded on this generalized positivity constraint, we present a
new iterative method that uses the equivalent-layer technique for es-
timating the uniform magnetization direction of arbitrary sources by
inverting the total-field anomaly data. Our method does not presume
any information about the shape of the sources. At each iteration, our
method solves (1) a linear inverse problem, subject to a positivity
constraint, for estimating the magnetic-moment distribution within
a planar equivalent layer of dipoles, and (2) a nonlinear inverse prob-
lem for estimating the uniform magnetization direction of the equiv-
alent sources. Tests with synthetic data generated by different
geologic scenarios show that the estimated magnetization direction
converges to that of the true sources. We also applied our method
to field data from the Goiás alkaline province (GAP), over theMontes
Claros complex, in the center of Brazil. Our results are in agreement
with those obtained independently by Zhang et al. (2018) in the same
area, suggesting the presence of a remarkable remanent magnetiza-
tion and showing the good performance of our method in interpreting
a complex geologic scenario.

METHODOLOGY

Fundamentals of the magnetic equivalent layer and the
positive magnetic-moment distribution

Let ΔTðx; y; zÞ be the total-field anomaly produced by a set of
magnetic sources at a point ðx; y; zÞ referred to in a topocentric Car-
tesian coordinate system with the x-, y-, and z-axes being oriented
to the north, east, and down, respectively. Consider that the main
geomagnetic field has a constant inclination I0 and declination
D0 throughout the study area, so that its direction can be defined
by the unit vector

F̂0 ¼
2
4 cos I0 cos D0

cos I0 sin D0

sin I0

3
5: (1)

Additionally, consider that the magnetic sources have a constant
total magnetization direction defined by the unit vector

m̂ðqÞ ¼
2
4 cos I cos D
cos I sin D

sin I

3
5; (2)

where the constants I and D represent its inclination and declina-
tion, respectively, and q is a 2 × 1 vector given by

q ¼
�
I
D

�
: (3)
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For convenience, we call q the magnetization direction vector.
In this case, the total-field anomaly ΔTðx; y; zÞ can be written as
follows:

ΔTðx; y; zÞ ¼ F̂T
0Mðx; y; zÞm̂ðqÞ; (4)

where Mðx; y; zÞ is a matrix given by

Mðx; y; zÞ ¼
2
4 ∂xxΓðx; y; zÞ ∂xyΓðx; y; zÞ ∂xzΓðx; y; zÞ
∂xyΓðx; y; zÞ ∂yyΓðx; y; zÞ ∂yzΓðx; y; zÞ
∂xzΓðx; y; zÞ ∂yzΓðx; y; zÞ ∂zzΓðx; y; zÞ

3
5;
(5)

with elements ∂αβΓðx; y; zÞ ≡ ∂2Γðx;y;zÞ
∂α∂β , α; β ¼ x; y; z representing

the second derivatives of the harmonic function

Γðx; y; zÞ ¼ γm

ZZZ
υ

mðx0
; y

0
; z

0 Þdυ0

½ðx − x
0 Þ2 þ ðy − y

0 Þ2 þ ðz − z
0 Þ2�12 :

(6)

In this equation, γm ¼ 10−9μ0∕4π (in H/m); μ0 is the vacuum
magnetic permeability; and x

0
, y

0
, and z

0
are the coordinates of

the volume element dυ
0
, which has total-magnetization intensity

of mðx0
; y

0
; z

0 Þ (in A/m) and is located within the volume υ of
the magnetic sources. We consider that the total-magnetization in-
tensity mðx0

; y
0
; z

0 Þ is strictly positive at all points within the mag-
netic sources. Consequently, Γðx; y; zÞ is positive at all points
located outside the magnetic sources. From the mathematical point
of view, Mðx; y; zÞ (equation 5) and Γðx; y; zÞ (equation 6) resem-
ble, respectively, the gradient tensor and the corresponding pseu-
dogravitational potential that would be produced by the
magnetic sources, at the point ðx; y; zÞ, if they had a density distri-
bution proportional to mðx0

; y
0
; z

0 Þ. Notice that Mðx; y; zÞ is sym-
metric, its trace is identically zero at all points ðx; y; zÞ outside
the magnetic sources, and it has five independent components that
are themselves harmonic functions (Pedersen and Rasmussen,
1990). By exploring these properties, we can conveniently rewrite
the total-field anomaly ΔTðx; y; zÞ (equation 4) as a linear combi-
nation of five independent harmonic functions as follows:

ΔTðx;y;zÞ¼ axx∂xxΓðx;y;zÞþaxy∂xyΓðx;y;zÞ
þaxz∂xzΓðx;y;zÞþayy∂yyΓðx;y;zÞþayz∂yzΓðx;y;zÞ; (7)

where

axx ¼ mxFx −mzFz

axy ¼ mxFy þmyFx

axz ¼ mxFz þmzFx

ayy ¼ myFy −mzFz

ayz ¼ myFz þmzFy (8)

are constants defined by the elements Fα and mβ, α ¼ x; y; z, β ¼
x; y; z of the vectors F̂0 (equation 1) and m̂ðqÞ (equation 2), respec-
tively. For simplicity, we have omitted the dependence on the
parameters I0 and D0 (equation 1) and I and D (equation 2).

Let Δ ~Tðx; y; zÞ be the total-field anomaly produced by a continu-
ous layer of dipoles that have constant magnetization direction de-
fined by the unit vector m̂ðqÞ (equation 3) and are located at the
constant depth zc. The total-field anomaly produced by this ficti-
tious layer may be defined as

Δ ~Tðx; y; zÞ ¼ F̂T
0
~Mðx; y; zÞm̂ðqÞ; (9)

where ~Mðx; y; zÞ is a matrix given by

~Mðx; y; zÞ ¼
2
4 ∂xxΦðx; y; zÞ ∂xyΦðx; y; zÞ ∂xzΦðx; y; zÞ
∂xyΦðx; y; zÞ ∂yyΦðx; y; zÞ ∂yzΦðx; y; zÞ
∂xzΦðx; y; zÞ ∂yzΦðx; y; zÞ ∂zzΦðx; y; zÞ

3
5;

(10)

with elements ∂αβΦðx; y; zÞ ≡ ∂2Φðx; y; zÞ∕∂α∂β, α; β ¼ x; y; z rep-
resenting the second derivatives of the harmonic function

Φðx;y;zÞ¼ γm

Z þ∞

−∞

Z þ∞

−∞

pðx 0 0;y 00;zcÞdS 00

½ðx−x 0 0Þ2þðy−y 0 0Þ2þðz−zcÞ2�12
;

zc >z: (11)

In this equation, x 0 0, y 0 0, and zc are the coordinates of the area
element dS 0 0, which has magnetic moment per unit area defined by
the function pðx 0 0; y 0 0; zcÞ (in A). Note that ~Mðx; y; zÞ (equation 10)
also represents a gradient tensor (Pedersen and Rasmussen, 1990)
and, consequently, it is symmetric, its trace is identically zero at all
points ðx; y; zÞ above the layer (with z < zc), and it has five inde-
pendent components that are themselves harmonic functions. These
properties also permit rewriting Δ ~Tðx; y; zÞ (equation 9) as a linear
combination of independent harmonic functions given by

Δ ~Tðx;y;zÞ¼ axx∂xxΦðx;y;zÞþaxy∂xyΦðx;y;zÞ
þaxz∂xzΦðx;y;zÞþayy∂yyΦðx;y;zÞþayz∂yzΦðx;y;zÞ; (12)

with coefficients aαβ, α ¼ x; y, β ¼ x; y; z defined by equation 8.
We know from potential theory that it is possible to find a func-

tion pðx 0 0; y 0 0; zcÞ (equation 11) so that the condition ΔTðx; y; zÞ ¼
Δ ~Tðx; y; zÞ holds true for all points ðx; y; zÞ located above the ficti-
tious layer of dipoles. In this case, the layer is called the equivalent
layer. To investigate the properties of pðx 0 0; y 0 0; zcÞ, we must first
observe that, by imposing the aforementioned condition and using
equations 7 and 12, we obtain

axx½∂xxΦðx; y; zÞ − ∂xxΓðx; y; zÞ�þ
axy½∂xyΦðx; y; zÞ − ∂xyΓðx; y; zÞ�þ
axz½∂xzΦðx; y; zÞ − ∂xzΓðx; y; zÞ�þ
ayy½∂yyΦðx; y; zÞ − ∂yyΓðx; y; zÞ�þ
ayz½∂yzΦðx; y; zÞ − ∂yzΓðx; y; zÞ� ¼ 0; z < zc; (13)

where the coefficients aαβ (equation 8), α ¼ x; y, β ¼ x; y; z are de-
fined by arbitrary values of I0 and D0 (equation 1) and I and D
(equation 2). Because equation 13 is valid for any possible values
of aαβ, which are defined for any values of I0,D0, I, andD, the five
linearly independent harmonic functions in brackets must be iden-
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tically zero for all points ðx; y; zÞ above the equivalent layer, where
z < zc. By equating each independent function to zero and rewriting
the second derivatives of the surface integral Φðx; y; zÞ (equa-
tion 11), we get

∂αβΓðx; y; zÞ ¼
Z þ∞

−∞

Z þ∞

−∞
pðx 0 0; y 0 0; zcÞ∂αβ

1

r
dS 0 0; zc > z;

(14)

where ðx 0 0; y 0 0; zcÞ is a point on the equivalent layer and ∂αβð1∕rÞ ≡
ð∂2∕∂α∂βÞð1∕rÞ represents the second derivative, with respect to
α ¼ x; y and β ¼ x; y; z, of the inverse distance function

1

r
≡

1

½ðx − x 0 0Þ2 þ ðy − y 0 0Þ2 þ ðz − zcÞ2�12
: (15)

A possible solution for equation 14 can be obtained by deriving
both sides of

Γðx;y;zÞ¼
Z þ∞

−∞

Z þ∞

−∞
pðx 0 0;y 0 0;zcÞ

1

r
dS 0 0; zc > z: (16)

Notice that the function pðx 0 0; y 0 0; zcÞ that solves this integral
equation for Γðx; y; zÞ (equation 16) also solves the integral equa-
tions for the second derivatives ∂αβΓðx; y; zÞ (equation 14). It can be
shown (see Appendix A) that equation 16 has a solution

pðx 0 0; y 0 0; zcÞ ¼
1

2π
∂zΓðx 0 0; y 0 0; zcÞ; (17)

where, according to equation 6,

∂zΓðx00;y00;zcÞ¼γm

Z Z Z
υ

mðx0
;y

0
;z

0 Þðz0−zcÞdυ0

½ðx00−x0 Þ2þðy00−y0 Þ2þðzc−z0 Þ2�32 ;

z
0
>zc: (18)

From the physical point of view, equation 18 represents the ver-
tical component of the gravitational attraction (or the pseudogravity
anomaly) that would be produced by the magnetic sources, on the
equivalent layer, if they had a density distribution proportional to
mðx0

; y
0
; z

0 Þ. Because mðx0
; y

0
; z

0 Þ is strictly positive at all points
ðx0

; y
0
; z

0 Þ within the magnetic sources, ∂zΓðx 0 0; y 0 0; zcÞ is positive
at all points ðx 0 0; y 0 0; zcÞ located on the equivalent layer.
The most interesting aspect of the magnetic-moment distribution

pðx 0 0; y 0 0; zcÞ (equation 17) is that it is defined as the product of a
positive constant 1∕2π and the function ∂zΓðx 0 0; y 0 0; zcÞ, which is
strictly positive at all points ðx 0 0; y 0 0; zcÞ on the equivalent layer.
Hence, pðx 0 0; y 0 0; zcÞ is strictly positive at all points on the equiv-
alent layer as well. This relation is similar to that presented by Ped-
ersen (1991) and Li et al. (2014). They determine, in the
wavenumber domain, the magnetic-moment distribution within a
continuous equivalent layer vertically magnetized by induction.
They also consider a planar equivalent layer located below and par-
allel to a horizontal plane containing the observed total-field
anomaly data. Under these assumptions, Pedersen (1991) and Li
et al. (2014) conclude that the magnetic-moment distribution within
the continuous equivalent layer is all positive and proportional to
the pseudogravity anomaly produced by the source on the plane
of the equivalent layer. Here, we do not follow the same wavenum-
ber-domain reasoning used by those authors. Moreover, equation 17
generalizes this positivity condition because (1) it holds true for all
cases in which the magnetization of the equivalent layer has the
same direction as the true total-magnetization of the sources,
whether it is purely induced or not, and (2) it does not require that
the observed total-field anomaly data be on a plane.

Parametrization and forward problem

In practical situations, it is not possible to determine a continuous
magnetic-moment distribution pðx 0 0; y 0 0; zcÞ (equation 17) over the
equivalent layer. For this reason, the layer has to be approximated
by a discrete set of dipoles (the equivalent sources) with the unit
volume located at the constant depth z ¼ zc. The total-field
anomaly produced by this discrete layer (the predicted total-field
anomaly) at a given point ðxi; yi; ziÞ, i ¼ 1; : : : ; N (Figure 1), is
given by

ΔTiðsÞ ¼ giðqÞTp; (19)

where s is an ðM þ 2Þ × 1 partitioned vector (the parameter vector)
given by

s ¼
�
p
q

�
; (20)

where q is the magnetization direction vector (equation 3); p is an
M × 1 vector (the magnetic-moment vector) whose jth element,

Figure 1. Schematic representation of an equivalent layer. The layer
is positioned over the horizontal plane at a depth of z ¼ zc (repre-
sented in gray), below the observation points ðxi; yi; ziÞ,
i ¼ 1; : : : ; N. Each source is located at a point ðxj; yj; zcÞ,
j ¼ 1; : : : ;M, and is represented by a dipole with unit volume,
magnetization direction m̂ðqÞ (equation 2), and magnetic moment
pj (equation 19).
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j ¼ 1; : : : ; M, is the magnetic moment intensity pj (in Am2) of the
jth dipole; and giðqÞ is another M × 1 vector whose jth element is
defined by the harmonic function

gijðqÞ ¼ γmF̂
T
0Mijm̂ðqÞ: (21)

In this equation, Mij is a 3 × 3 matrix given by

Mij ¼
2
4 ∂xx 1

r ∂xy 1
r ∂xz 1

r
∂xy 1

r ∂yy 1
r ∂yz 1

r
∂xz 1

r ∂yz 1
r ∂zz 1

r

3
5; (22)

where ∂αβð1∕rÞ ≡ ð∂2∕∂α∂βÞð1∕rÞ represent the second derivatives,
with respect to α ¼ x; y; z and β ¼ x; y; z, of the inverse distance
1∕r (equation 15) between the coordinates of the observation points
ðx; y; zÞ ¼ ðxi; yi; ziÞ and the coordinates of the equivalent sources
ðx 0 0; y 0 0; zcÞ ¼ ðxj; yj; zcÞ (Figure 1). Equations 19–22 show that
the predicted total-field anomaly ΔTiðsÞ has a linear relation with
the magnetic-moment vector p and a nonlinear relation with the
magnetization direction vector q (equation 3).

Inverse problem

Let ΔTo be the observed-data vector whose ith element ΔTo
i is

the observed total-field anomaly produced by the magnetic sources
at the point ðxi; yi; ziÞ, i ¼ 1; : : : ; N (Figure 1). Similarly, let ΔTðsÞ
be the predicted-data vector whose ith elementΔTiðsÞ (equation 19)
is the predicted total-field anomaly produced by the discrete equiv-
alent layer at the same point ðxi; yi; ziÞ. To estimate the parameter
vector s (equation 20) minimizing the difference between ΔTo and
ΔTðsÞ, we solve the following inverse problem:

minimizingΨðsÞ ¼ kΔTo − ΔTðsÞk22 þ μf0kpk22; (23a)

subject to p ≥ 0: (23b)

On the right side of equation 23a, the first and second terms are
the data-misfit function and the zeroth-order Tikhonov regulariza-
tion function, μ is the regularizing parameter, k · k22 represents the
squared Euclidean norm, and f0 is a normalizing factor. This factor
makes a trade-off between the data-misfit and zeroth-order Tikho-
nov regularization functions. In the inequality 23b, 0 is an M × 1

vector with all elements equal to zero, and the inequality sign is
applied element by element. This positivity constraint on the mag-
netic-moment vector p is incorporated by using the nonnegative
least squares (NNLS) proposed by Lawson and Hanson (1974).
To solve this constrained inverse problem, let us first consider the

following second-order expansion of the goal function (equa-
tion 23a) around s ¼ sk (equation 20):

Ψðsk þ ΔskÞ ≈ ΨðskÞ þ JkTΔsk þ 1

2
ΔskTHkΔsk; (24)

whereΔsk is a perturbation on the parameter vector and the terms Jk

and Hk are, respectively, the gradient vector and the Hessian matrix
evaluated at sk. Then, we estimate the perturbation vector Δ̄sk that

minimizes the expanded function (equation 24) by taking the gra-
dient with respect to Δsk and setting the result equal to the null
vector. This procedure leads to the linear system

HkΔ̄sk ¼ −Jk; (25)

which represents the kth step of the Gauss-Newton method (Aster
et al., 2005) for minimizing our goal function (equation 23a). We
rewrite this linear system by neglecting the cross-derivatives in the
Hessian matrix as follows:

�
Hk

pp 0
0T Hk

qq

��
Δ̄pk
Δ̄qk

�
≈ −

�
Jkp
Jkq

�
; (26)

in which 0 is anM × 2matrix containing all of the elements equal to
zero; Δ̄pk ¼ p̄kþ1 − p̄k is a correction on the magnetic-moment vec-
tor p; Δ̄qk ¼ q̄kþ1 − q̄k is a correction on the magnetization direc-
tion q; and the terms Jkα and Hk

αα, α ¼ p; q are the gradient vector
and the Hessian matrix calculated with respect to the elements of p
and q, respectively. The gradient vector Jkp and the Hessian matrix
Hk

pp (equation 26) related to the magnetic-moment vector p (equa-
tion 20) are, respectively,

Jkp ¼ −2GkT
p ½Δ̄To − ΔTðs̄kÞ� þ 2μfk0p̄

k (27)

and

Hk
pp ¼ 2GkT

p Gk
p þ 2μfk0I; (28)

where Gk
p is an N ×M matrix whose ijth element is given by the

harmonic function gijðq̄kÞ (equation 21) evaluated at the magneti-
zation direction q̄k, I is the M ×M identity matrix, and fk0 is a nor-
malizing factor equal to

fk0 ¼
traceðGkT

p Gk
pÞ

M
: (29)

This factor is used with the purpose of making a trade-off be-
tween the terms forming the gradient vector Jkp (equation 27)
and the Hessian matrix Hk

pp (equation 28) along the iterative proc-
ess. The gradient vector Jkq and the Hessian matrixHk

qq (equation 26)
related to the magnetization direction q (equation 3) are, respec-
tively,

Jkq ¼ −2GkT
q ½ΔTo − ΔTðs̄kÞ� (30)

and

Hk
qq ≈ 2GkT

q Gk
q; (31)

in which Gk
q is an N × 2 matrix given by

Gk
q ¼

2
64
∂Ig1ðq̄kÞTp̄k ∂Dg1ðq̄kÞTp̄k

..

. ..
.

∂IgNðq̄kÞTp̄k ∂DgNðq̄kÞTp̄k

3
75; (32)

where ∂αgiðq̄kÞ ≡ ∂giðq̄kÞ∕∂α, α ¼ I; D represent the first
derivatives of vector giðq̄kÞ (equation 19) with respect to the incli-
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nation I and the declination D of the total magnetization of the
sources.

Iterative algorithm for solving the inverse problem

The iteration k ¼ 0 of our algorithm starts with an initial guess
q̄k ¼ q̄0 for the direction vector q (equation 3). By using this q̄k, the
upper part of equation 26 leads to the following linear system for the
magnetic-moment vector:

½GkT
p Gk

p þ μfk0I�p̄k ¼ GkT
p ΔTo: (33)

To impose the positivity constraint (equation 23b) on the mag-
netic-moment distribution p̄kþ1 within the equivalent layer, we
solve this linear system (equation 33) by using the NNLS method
(Lawson and Hanson, 1974; Silva Dias et al., 2007). This positive
magnetic-moment distribution is then used to estimate a correction
Δ̄qk on the magnetization direction by solving the following uncon-
strained nonlinear system via the Levenberg-Marquardt method
(Aster et al., 2005):

½GkT
q Gk

q þ λI�Δ̄qk ¼ GkT
q ½ΔTo − ΔTðskÞ�; (34)

where λ is the Marquardt parameter and I is the identity matrix.
After estimating the correction Δ̄qk at the kth iteration, we update
the magnetization direction as follows:

q̄kþ1 ¼ q̄k þ Δ̄qk; (35)

and we use it as input for estimating a new positive magnetic-mo-
ment distribution with equation 33 and so on. The iterative process
stops when the goal function (equation 23a) is invariant along suc-
cessive iterations. We show in Appendix B that our method fails if
the sources are vertically magnetized.

Choice of layer depth zc and regularization parameter μ

The procedure for the use of our methodology for estimating the
total magnetization requires the choice of two main parameters. The
first one is the layer depth zc (Figure 1), and the second is the
regularization parameter μ (equation 33).
There is a classic criterion proposed by Dampney (1969) to

define the layer depth based on the horizontal data sampling. This
criterion states that the distance between the plane containing the
data and the plane defining the layer should vary from 2.5 to
6.0 times the horizontal data sampling. This criterion, however,
is valid for evenly spaced data. Here, we define the layer depth
zc by using the horizontal space between adjacent flight lines of
an airborne survey. We found empirically that zc can vary from
2 to 3 times the spacing between adjacent flight lines. Notice that
the range that we found empirically is smaller than that proposed by
Dampney. Apparently, this is due to the fact that, in an airborne
survey, the data sampling along the lines is smaller than the space
between the lines.
To solve equation 33, we have to choose a reliable regularization

parameter μ. For this purpose, we use the L-curve method (Hansen
and O’Leary, 1993). This approach is widely used in the literature to
find a regularizing parameter, which filters out enough noise with-
out losing too much information in the final solution. The procedure
of finding the parameter plots a curve of optimal values between the

solution and residual norms. The corner of the curve is the optimal
regularization parameter, which establishes a trade-off between the
regularizing and data-misfit functions.

APPLICATION TO SYNTHETIC DATA

We applied the proposed method to three synthetic data sets sim-
ulating different geologic scenarios. The first one is generated by a
model containing a set of multiple sources with different geom-
etries, all of them with the same magnetization direction. The sec-
ond is generated by a set of multiple magnetic bodies, but one of
them is a shallow-seated source with the same magnetization direc-
tion. In the third test, we violate the hypothesis of unidirectional
magnetization by simulating a shallow-seated source with a mag-
netization direction different from the other bodies.
In all of the tests, the simulated data were computed on a regular

grid of 49 × 25 points (with a total of N ¼ 1225 observations) at
z ¼ −100 m. The simulated area extends over 12 km along the
x- and y-axes, resulting in a grid spacing of 250 and 500 m along
the x- and y-axes, respectively. The data were contaminated with
pseudorandom Gaussian noise with zero mean and 10 nT standard
deviation. The geomagnetic field direction simulated was
I0 ¼ −40° and D0 ¼ −22° for the inclination and declination, re-
spectively. In the inversion, we use an equivalent layer composed
by a grid of 49 × 25 dipoles (with a total of M ¼ 1225 equivalent
sources) positioned at a depth of zc ¼ 1150 m below the observa-
tion plane (2.5 times the greater grid spacing). We use the L-curve to
choose the regularizing parameter (μ). Our algorithm starts with an
initial guess q̄0 ¼ ð−10°;−10°Þ for the inclination and declination,
respectively.

Unidirectional magnetization sources

We generate a 3D prism with a polygonal cross section whose top
is positioned at a depth of 450 m and the bottom at 3150 m with a
magnetization intensity of 4 A/m. We also generate two spheres
with magnetization intensity equal to 3 A/m and radius equal to
500 m. The coordinates of the spheres’ centers are xc ¼ 1800 m,
yc ¼ −1800 m, and zc ¼ 1000 m and xc ¼ 800 m, yc ¼ 800 m,
and zc ¼ 1000 m. We produce two rectangular prisms with
2.5 A/m of magnetization intensity. The smaller prism has the
top at a depth of 450 m and side lengths of 1000, 700, and
500 m along the x-, y-, and z-axes, respectively. The greater prism
has the top at a depth of 500 m and side lengths of 1000, 2000, and
1550 m along the x-, y-, and z-axes, respectively. The total mag-
netization of all simulated sources has inclination of −25° and de-
clination of 30°. The noise-corrupted data are shown in Figure 2a.
Figure 2b shows the predicted data produced by the equivalent

layer. Figure 2c shows the residuals defined as the difference be-
tween the simulated data (Figure 2a) and the predicted data (Fig-
ure 2b). The residuals appear normally distributed with a mean
of −0.29 nT and a standard deviation of 9.67 nT as shown in Fig-
ure 2d. The estimated magnetization direction q̄ has inclination of
−28.6° and declination of 30.7°, which are very close to the true
values. Figure 2e shows the estimated magnetic-moment distribu-
tion p̄. The convergence of the algorithm is shown in Figure 2f.
These results show that the all-positive magnetic-moment distribu-
tion and the estimated magnetization direction produce an accept-
able data fitting.
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Unidirectional magnetization with a shallow-seated
source

Here, we test the methodology performance when a shallow-
seated source exists. The model seems like the previous test except
for the smaller prism, whose top is 150 m deep while maintaining its
volume. The magnetization intensity of this shallow prism is equal
to 1.5 A/m. The magnetization direction of all sources is −25° in-
clination and declination 30°, respectively. The synthetic data are
shown in Figure 3a.
Figure 3b shows the predicted total-field anomaly produced by

the equivalent layer. Figure 3c shows the residuals defined as the
difference between the simulated data (Figure 3a) and the pre-
dicted data (Figure 3b). The residuals appear normally distributed
with a mean of −0.42 nT and a standard deviation of 10.67 nT as
shown in Figure 3d. Figure 3e shows the estimated magnetic-mo-
ment distribution p̄. The convergence of the algorithm is shown in
Figure 3f. Despite the large residual located above the shallow-
seated source, we consider that the methodology produced a re-
liable result because the estimated magnetization direction q̄
has inclination −28.8° and declination 31.7°, and it is very close
to the corresponding true magnetization direction, and the all-pos-
itive magnetic-moment distribution produces an acceptable data
fitting.

Shallow-seated source with a different magnetization
direction

In this test, we simulate the presence of a shallow-seated body
with a magnetization direction different from the other magnetic
sources. The shallow prism has dimensions and magnetization in-
tensity equal to the previous test. However, the magnetization di-
rection of the shallow prism is 20° of inclination and −30° of
declination, whereas the other sources have inclination −25° and
declination 30°. The noise-corrupted data are shown in Figure 4a.
Figure 4b shows the predicted total-field anomaly. Figure 4c

shows the residuals defined as the difference between the simulated
data (Figure 4a) and the predicted data (Figure 4b). The residuals
have a mean of −0.71 nT and a standard deviation of 12.84 nT as
shown in Figure 4d. The estimated magnetization direction q̄ has
inclination of −30.4° and declination of 27.6°. Figure 4e shows
the estimated magnetic-moment distribution p̄. The convergence
of the algorithm is shown in Figure 4f. We also note that the esti-
mated magnetization direction is very close to the magnetization
direction of most sources. Moreover, despite the slight difference
from the true magnetization direction, the estimated magnetic-mo-
ment distribution produces an acceptable data fit. With the excep-
tion of the small area exactly above the small-seated prism, most of
the residuals are close to 0 nT.

Figure 2. Application to synthetic data for multi-
ple sources with unidirectional magnetization.
(a) Noise-corrupted total-field anomaly. (b) Pre-
dicted data produced by the equivalent layer.
(c) Difference between the data shown in (a and
b). (d) Histogram of the residuals. (e) All-positive
magnetic-moment distribution. (f) Goal function
value (equation 23a) per iteration showing the
convergence.
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APPLICATION TO FIELD DATA

The GAP is a region in the central part of Brazil where there are
occurrences of mafic-ultramafic alkaline magmatism. This region
presents a variety of rocks with extensive petrographic types.
Throughout the area, there are mafic-ultramafic complexes (plu-
tonic intrusions), subvolcaninc alkaline intrusions (diatremes),
and volcanic products (kamafugite lava flows) with several dikes.
Some of the main alkaline complexes of GAP are the Montes Claros
de Goiás, Diorama, Córrego dos Bois, Morro do Macaco, and Fa-
zenda Buriti. These alkaline intrusions are surrounded by a Precam-
brian basement and the Phanerozoic sedimentary rocks of the
Paraná Basin (Junqueira-Brod et al., 2005; Carlson et al., 2007;
Marangoni and Mantovani, 2013; Dutra et al., 2014). Recent studies
indicate the existence of a remarkable remanent magnetization com-
ponent within these intrusions (Marangoni and Mantovani, 2013;
Oliveira et al., 2015; Marangoni et al., 2016; Zhang et al., 2018).
The aeromagnetic survey has a flight pattern with north–south

flight lines spaced from approximately 500 m and data acquired
at intervals of approximately 8 m along each line, and a constant
height of 100 m from the terrain. The geomagnetic field direction
for this area was −19.5° and −18.5° for the inclination and decli-
nation, respectively. We invert the total-field anomaly (Figure 5a)
from the alkaline complex of Montes Claros. To speed up data
processing and inversion, we downsampled the data along the flight
lines, resulting in a grid of 55 × 32 points (a total of N ¼ 1787 ob-

servations). This new setup results in approximately 320 and 470 m
grid spacing along the x- and y-axes, respectively. We use an equiv-
alent layer composed by a grid of 55 × 32 dipoles (a total of M ¼
1787 equivalent sources) positioned at a depth of 840 m below the
observation plane (approximately twice the greater grid spacing).
The algorithm starts with an initial guess of −70° and 50° for
the inclination and declination, respectively. Figure 5b shows the
predicted data produced by the equivalent layer. Figure 5c shows
the residuals defined as the difference between the observed data
(Figure 5a) and the predicted data (Figure 5b). Note that the two
small places in Figure 5c where large residuals are clearly apparent
may indicate the existence of shallow-seated geologic sources with
a different magnetization direction. However, the histogram of the
residuals (Figure 5d) is acceptable with its mean of −15.79 nT
(∼0.1% of the maximum value of the total-field anomaly data)
and standard deviation of 339.04 nT (∼3% of the maximum value
of the total-field anomaly data). The estimated magnetization direc-
tion q̄ has inclination of −45.5° and declination of 38.4°. Figure 5e
and 5f shows the estimated magnetic-moment distribution p̄ and the
convergence of the algorithm. We check the quality of the estimated
magnetization direction by computing the RTP of the observed to-
tal-field anomaly. We can note that the RTP anomaly (Figure 6)
exhibits predominantly positive values and decays to zero toward
the borders of the study area. For this reason, we consider that
the estimated magnetization direction led to a satisfactory RTP
anomaly. We conclude with these results that the all-positive mag-

Figure 3. Multiple synthetic sources with a shal-
low-seated body under unidirectional magnetiza-
tion. (a) Noise-corrupted total-field anomaly.
(b) Predicted data produced by the equivalent
layer. (c) Difference between the data shown in
(a and b). (d) Histogram of the residuals.
(e) All-positive magnetic-moment distribution.
(f) Goal function value (equation 23a) per iteration
showing the convergence.
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Figure 5. Application to field data from the alkaline
complex of Montes Claros (Brazil). (a) Observed to-
tal-field anomaly. (b) Predicted data produced by the
equivalent layer. (c) Difference between the data
shown in (a and b). (d) Histogram of the residuals.
(e) All-positive magnetic-moment distribution.
(f) Goal function value (equation 23a) per iteration
showing the convergence.

Figure 4. Multiple synthetic sources with a shallow-
seated body under different magnetization directions.
(a) Noise-corrupted total-field anomaly. (b) Predicted
data produced by the equivalent layer. (c) Difference
between the data shown in (a and b). (d) Histogram of
residuals. (e) All-positive magnetic-moment distribu-
tion. (f) Goal function value (equation 23a) per iter-
ation showing the convergence.
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netic moment distribution and the estimated magnetization direction
produce an acceptable data fit. According to Marangoni and Man-
tovani (2013), laboratory measurements made with rock samples of
the GAP indicate an average total magnetization direction with in-
clination and declination equal to −39.0° and 1.0°, respectively.
However, Zhang et al. (2018) use aeromagnetic data to estimate
a total magnetization direction with inclination of −49.0° and de-

clination of 46.0° for the same complex of Montes Claros de Goiás.
These differences may be due to the fact that the results obtained
with rock samples represent the total-magnetization direction of lo-
cal shallow sources, whereas the result obtained with airborne data
reflects the predominant influence of deeper sources at the study
area. We note that our results, also obtained with airborne data,
are very close to those obtained by Zhang et al. (2018) for the same
complex. Moreover, they also confirm the existence of the remark-
able remanent magnetization for this area.

CONCLUSION

We have mathematically proven that the total-field anomaly data
caused by a set of magnetic sources with a uniform magnetization
direction can be reproduced exactly by a continuous and planar
layer of dipoles having an all-positive magnetic-moment distribu-
tion. This theoretical property holds true for the case in which a
layer has the same magnetization direction as that of the true
sources, regardless of whether they have a purely induced magneti-
zation or not. By using this generalized positivity constraint, we
presented a new iterative method for estimating the total magneti-
zation direction of 3D magnetic sources based on the equivalent-
layer technique. At each iteration, we impose a positivity constraint
on the estimated magnetic-moment distribution of the layer and
solve a nonlinear inverse problem for estimating the magnetization
direction of the equivalent sources. Prior knowledge about the shape
and depth of the magnetic sources is not required, neither is the use
of an evenly spaced data set. This methodology can be applied for
determining the magnetization direction of multiple sources, con-
sidering all of them with the same magnetization direction. Results
obtained with synthetic data produced by multiple sources show
that the estimated magnetization direction obtained by our iterative
method successfully retrieves the true one. Tests with synthetic data
illustrate how the presence of a relatively shallow-seated source af-
fects the result obtained by our method for the cases in which it has
a magnetization direction equal to and different from the other
sources. In both cases, the equivalent layer yielded large data misfits
above the shallow source; however, we cannot distinguish whether
the shallow source has a magnetization direction equal to or differ-
ent from the other sources. Moreover, our method produces the
most poorly estimated magnetization direction when a shallow-
seated source is magnetized in a direction that differs from the other
sources. An application to field data over the Goiás alkaline prov-
ince, in the center of Brazil, has confirmed that our method can be a
reliable tool for interpreting complex geologic scenarios. The result
over the Montes Claros complex suggests the presence of a strong
remanent magnetization component and corroborates a previous
study conducted independently at the same area. The estimated
magnetic-moment distribution over the layer has led to a very
acceptable RTP but also produced large data misfits at some isolated
regions. We presume that these locally large data misfits are due to
shallow sources; however, we cannot infer if they have the same
magnetization direction as the other bodies.
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to the plane z ¼ zc and are defined by z ¼ zc − Δz and
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APPENDIX A

DEDUCTION OF EQUATION 17

In this appendix, we prove the existence of an all-positive mag-
netic-moment distribution pðx 0 0; y 0 0; zcÞ that solves the integral
shown in equation 16.
Consider a closed surface located above the magnetic sources,

formed by the plane z ¼ zc containing the equivalent layer and a
hemisphere with infinite radius (Figure 7). This surface encloses
a region where Γðx 0 0; y 0 0; zcÞ (equation 6) is harmonic at all points.
By using the Green’s second identity (Kellogg, 1967, p. 215), we
can show that

0 ¼ 1

4π

Z þ∞

−∞

Z þ∞

−∞
∂zΓðx 0 0; y 0 0; zcÞ

1

l

− Γðx 0 0; y 0 0; zcÞ∂z
1

l
dS 0 0; zc > z; (A-1)

where Γðx 0 0; y 0 0; zcÞ is the volume integral defined by equation 6
and

1

l
≡

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x 0 0Þ2 þ ðy − y 0 0Þ2 þ ðzs − zcÞ2

p (A-2)

is the inverse distance between the fixed point ðx 0 0; y 0 0; zcÞ, located
on the equivalent layer, and the point ðx; y; zsÞ, with zs ¼ zc þ Δz,
Δz > 0. The point ðx; y; zsÞ is conveniently defined as the mirror of
ðx; y; zÞ, located at z ¼ zc − Δz, with respect to the plane z ¼ zc
containing the equivalent layer (Figure 7). Equation A-1 combined
with the Green’s third identity (Kellogg, 1967, p. 219) gives rise to

Γðx;y;zÞ¼ 1

4π

Z þ∞

−∞

Z þ∞

−∞
∂zΓðx 0 0;y 0 0;zcÞ

×
�
1

r
þ 1

l

�
Γðx 0 0;y 0 0;zcÞ

�
∂z
1

r
þ∂z

1

l

�
dS 0 0; zc > z; (A-3)

where 1∕r is defined by equation 15. The term ð1∕rþ 1∕lÞ rep-
resents the Green’s function of the second kind (Kellogg, 1967,
p. 246) associated with this integral. We can verify that
1∕r ¼ 1∕l, ∂zð1∕rÞ ¼ −∂zð1∕lÞ and, consequently,

Γðx;y;zÞ¼ 1

2π

Z þ∞

−∞

Z þ∞

−∞
∂zΓðx 0 0;y 0 0;zcÞ

1

r
dS 0 0; zc > z:

(A-4)

This equation shows the inherent ambiguity of potential field
methods (Roy, 1962) and solves the Neumann’s problem or the sec-

ond boundary value problem of potential theory (Kellogg, 1967,
p. 246). In the present case, this problem consists of defining
the harmonic function Γðx; y; zÞ (equation 6) at the region above
the equivalent layer from the values of its vertical derivative on
the plane containing the equivalent layer.

APPENDIX B

VERTICALLY MAGNETIZED SOURCES

Our method fails when the total magnetization of the sources has
a direction equal or close to vertical. This appendix provides the
theoretical basis for understanding this limitation.
Consider the limiting case in which the total magnetization of the

sources is vertical (e.g., I ¼ �90°). In this case, the total-field
anomaly ΔTðx; y; zÞ (equation 4) does not depend on the declina-
tion D, which reveals a well-known fact: vertically magnetized
sources do not have a definite declination. As a consequence,
the minimum region of the goal function (equation 23a) on the
parameter space is not well defined; rather, it is elongated in the
direction of D. Unfortunately, the positivity constraint on the mag-
netic-moment vector (equation 23b) does not solve this ambiguity
with respect to the declination D.
To understand how this ambiguity affects our method, let us start

by analyzing the N × 2 matrix Gk
q (equation 32) required for esti-

mating the correction Δ̄qk in the magnetization direction (equa-
tion 34). Its ith line is defined by the dot product of the
estimated magnetic-moment vector p̄k and the first derivatives
∂αgiðq̄kÞ ≡ ∂giðq̄kÞ∕∂α, α ¼ I; D, of the vector giðqÞ (equation 19),
evaluated at q ¼ q̄k, with respect to the inclination I and the decli-
nation D of the total magnetization of the sources. The jth element
∂αgijðq̄kÞ ≡ ∂gijðq̄kÞ∕∂α of the M × 1 vector ∂αgiðq̄kÞ is defined by
computing the derivative of the harmonic function gijðqÞ (equa-
tion 21), as follows:

∂αgijðq̄kÞ ¼ γmF̂
T
0Mij∂αm̂ðq̄kÞ; α ¼ I; D; (B-1)

where

∂Im̂ðq̄kÞ ¼
2
4− sin Īk cos D̄k

− sin Īk sin D̄k

cos Īk

3
5 (B-2)

and

∂Dm̂ðq̄kÞ ¼
2
4− cos Īk sin D̄k

cos Īk cos D̄k

0

3
5 (B-3)

are derivatives of the unit vector m̂ðqÞ (equation 2), evaluated at the
magnetization direction q̄k ¼ ½ĪkD̄k�T, with respect to I and D.
Notice that, as the estimated inclination Īk approaches �90°, all

elements forming the vector ∂Dm̂ðq̄kÞ (equation B-3) and, conse-
quently, those forming the second column of Gk

q (equation 32) tend
to zero. As a result, the nonlinear problem for estimating the mag-
netization direction (equation 34) becomes insensitive to changes in
the declinationD, and the convergence of our method becomes very
slow due to the flatness of the goal function ΨðsÞ (equation 23a) in
the parameter space.
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