Trabajo Práctico Nº 5 - Respuestas

Transformada discreta de Fourier

- 1) a) Ayuda: Conjugar la expresión de la definición de H_k .
 - b) Corolario de a).
 - c) Corolario de a).
 - d) Usar la definición de la TDF de H_k y la expresión del coseno complejo.
 - e) Usar la definición de la TDF inversa de h_n y la expresión del coseno complejo.
- 2) Usar la definición de TDF y recordar que $|z|^2 = z z^*$.
- 3) fft([0.25 0.5 0.25]) es la TDF de una secuencia que Julia interpreta como una secuencia causal $a_n = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$.

Para ingresar la secuencia causal con el $\frac{1}{2}$ centrado en t=0 debe considerar la periodicidad.

- 4) -
- 5) Usando el teorema de corrimiento lineal de fase $(\tau=1)$: $H_k^{corr}=(4,\,-1+1i,\,-6,\,-1-1i)$.
- 6) -
- 7) Los elementos del vector número de onda son $K_j = \nu_j/\Delta x$, con $\nu_j = (2\pi/N)j$ si $\nu_j < \pi$ y $\nu_j = (2\pi/N)j 2\pi$ en el resto, $j = 0, \dots, N-1$. La derivada analítica es $s'(x) = -K\sin(Kx)$.
- 8) a) $a_t * b_t = (-7, 20, -29, 57, 0, 13, -72).$
 - **b)** $a_t \circledast b_t = (-7, 33, -101, 57).$
- 9) a) $\phi_{ab}(\tau) = a_{-\tau}^* * b_{\tau} = (72, -38, 7, \underline{-62}, 35 19, 14).$ $\phi_{ba}(\tau) = b_{-\tau}^* * a_{\tau} = (14, -19, 35, -62, 7 - 38, 72).$
 - **b)** $\phi_{ab}^{\text{circ}}(\tau) = a_{-\tau}^* \circledast b_{\tau} = (\underline{-62}, 107 57, 21).$ $\phi_{ba}^{\text{circ}}(\tau) = b_{-\tau}^* \circledast a_{\tau} = (\underline{-62}, 21 - 57, 107).$
 - c) -
- **10)** a) $\phi_{aa}(\tau) = (-16, 36, -72, \underline{113}, -72, 36, -16).$
 - **b)** $TDF\{\phi_{aa}(\tau)\}=(9.0, 36.03, 60.22, 294.75, 294.75, 60.22, 36.03).$
 - c) $|A_k|^2 = (9.0, 36.03, 60.22, 294.75, 294.75, 60.22, 36.03).$