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Chapter 1

Fourier Analysis

1.1 Introduction

In this part of the course we will review some fundamental aspects of Fourier

Analysis. I n particular, we will first study some aspects of orthogonal

expansions. We will also study Fourier series, and the Fourier transform.

Along this course we will deal with continuous and discrete signals. In this

chapter, we explore the basic treatment of continuous signals. The extension

to the discrete case is covered in Chapter 2.

1.1.1 Orthogonal Functions

We present the basic treatment to expand a function (in general a time

dependent signal) in terms of a superposition of orthogonal functions.

A set of functions Φj(t), j = 1, 2, 3, . . . is said to be orthogonal in the interval

[t1, t2] if the following condition is satisfied:

∫ t2

t1
φi(t)φj(t)dt = kiδi,j (1.1)

where δi,j is the Kronecker operator

δi,j = 0 if i 6= j

δi,j = 1 if i = j .

1



2 CHAPTER 1. FOURIER ANALYSIS

In signal processing, we usually want to represent a signal as a superposition

of simple functions (sines, cosines, boxcar functions). The convenience of

this procedure will become clear along the course (I hope!). In general, one

can say that the representation should be in terms of functions with some

attractive mathematical properties or with some physical meaning.

Let assume that we want to approximate a function f(t) by a superposition

of n orthogonal functions:

f(t) ≈
N∑

i=1

ciφi(t) (1.2)

The coefficients ci , i = 1 . . . N can be obtained by minimizing the means

square error defined as:

MSE =
1

t2 − t1

∫ t2

t1
(f(t) −

N∑

i=1

φi(t))
2 dt (1.3)

the last equation can be expanded as follows:

MSE =
1

t2 − t1

∫ t2

t1
(f(t)2 +

N∑

i=1

c2iφi(t)
2 − 2

N∑

i=1

ciφi(t)f(t)) dt (1.4)

I have omitted the cross-products of the form φi(t)φj(t) since according to

the definition (1) they cancel up. The last equation can be written as

MSE =
1

t2 − t1

∫ t2

t1
f(t)2 dt+

N∑

i=1

c2i ki − 2
N∑

i=1

ciγi (1.5)

where

γi =

∫ t2

t1
φi(t)f(t) dt . (1.6)

The term outside the integral in equation (1.5) can be rewritten as follows:
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N∑

i=1

(c2i ki − 2ciγi) =
N∑

i=1

(ci
√
ki −

γi√
ki

)2 −
N∑

i=1

γ2
i

ki
.

We are now in condition of re-writing the MSE as follows:

MSE =
1

t2 − t1

∫ t2

t1
f(t)2 dt+

N∑

i=1

(ci
√
ki −

γi√
ki

)2 −
N∑

i=1

γ2
i

ki
(1.7)

It is clear that the MSE is minimum when the second term in the RHS in

the last equation is zero:

ci

√
(ki) =

γi√
ki

(1.8)

or, in other words, the coefficient ci is given by

ci =
γi

ki
=

∫ t2
t1
f(t)φi(t) dt
∫ t2
t1
φ(t)2dt

, . (1.9)

We have obtained an expression for the N coefficients of the expansion of

f(t). If the ci i = 1 . . . N are chosen according to the last expression, the

mean square error becomes:

MSE =
1

t2 − t1

∫ t2

t1
f(t)2 dt−

N∑

i=1

c2i ki . (1.10)

It can be shown that if N → ∞ the mean square error vanishes (MSE →
∞). In that case, the last expression becomes what is called “Parseval

Theorem”:

∫ t2

t1
f(t)2dt =

∞∑

i=1

c2i ki . (1.11)
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1.1.2 Fourier Series

Consider the orthogonal set given by

ejnω0t , n = 0,±1,±2,±3, . . . (1.12)

this set is orthogonal in t ∈ [t0, t0 + 2π
ω0

]. To prove the last statement we

need to evaluate the following integral 1

Int =
∫ t0+2π/ω0

t0 ejnω0te−jkω0t dt

= 1
jω0(n−k)e

j(n−k)(ej2π(n−k) − 1) ,
(1.13)

It is easy to see that the integral takes the following values:

Int =

{
0 if n 6= k
1 if n = k

(1.14)

We have proved that ejnω0t , n = 0,±1,±2± 3, . . . conform an orthogonal

set of functions.

When a signal is expanded in terms of exponential we have a Fourier series:

f(t) =
∞∑

n=−∞

Fne
jnω0t (1.15)

where the coefficients of the expansion are given by 2

Fn =
2π

ω0

∫ t0+2π/ω0

t0
f(t)e−jnω0t dt (1.16)

Fn is the complex spectrum of Fourier coefficients. The periodic signal f(t)

has been decomposed into a superposition of complex sinusoids of frequency

ω0n and amplitude given by Fn. It is important to remember that a contin-

uous and periodic signal has a discrete spectrum of frequencies given by:

1The inner product for complex functions is defined as
∫

φi(t)φj(t)
∗ dt, where ∗ stands

for conjugate.
2we have already obtained this result for an arbitrary set φi(t)
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ωn = nω0

To analyze non-periodic signals we need to introduce the Fourier Transform.

In this case, the signal is represented in terms of a continuous spectrum of

frequencies.

1.2 The Fourier Transform

So far we have found an expression that allow us to represent a periodic sig-

nal of period T in terms of a superposition of elementary functions (complex

exponentials). We have seen that the Fourier series can be used to repre-

sent periodic or non-periodic signals. We have to realize, however, that the

Fourier series does not properly represent a non-periodic signal outside the

interval of [t0, t0 +T ]. In fact, outside [t0, t0 +T ] the Fourier series provides

a periodic extension of f(t).

We have also shown that a periodic signal has a discrete spectrum given

by the coefficients of the expansion in terms of the Fourier series, which we

have called Fn, n = 0,±1,±2, . . ..

In this section we provide a representation for a non-periodic signal f(t) in

t ∈ (−∞,∞) by means of a continuous spectrum of frequencies.

Let us assume a periodic signal in the interval [−T/2, T/2]; the signal can

be represented in terms of a Fourier series as follows:

f(t) =
∞∑

n=−∞

Fne
jnω0tdt , ω0 =

2π

T
(1.17)

where the coefficients are given by

Fn =
1

T

∫ T/2

−T/2
f(t)e−jnω0tdt (1.18)

We can substitute equation (1.18) into (1.17) and obtain the following ex-

pression:
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f(t) =
∞∑

n=−∞

1

T

∫ T/2

−T/2
f(t)e−jnω0tdtejnω0t . (1.19)

Now suppose that we make T → ∞3, we will also assume that the funda-

mental frequency ω0 → dω, where dω is a differential frequency. In this

case, we can transform the discrete variable nω0 into a continuous one ω,

and finally, since now we have a summation on a continuous variable ω we

will convert the summation into an integral

f(t) =

∫ ∞

−∞

dω

2π
(

∫ ∞

−∞
f(t)e−jωtdt)ejωtdω . (1.20)

The integral in brackets is called the Fourier transform of f(t):

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt (1.21)

It is clear from equation (1.20) that the formula to represent the signal in

terms of F (ω) is given by:

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω . (1.22)

The pair (1.21) and (1.22) are used to compute the Fourier transform its

inverse, respectively. Equation (1.22) is also refereed as the inverse Fourier

transform.4

It is important to stress that the signal in (−∞,∞) has now a continuous

spectrum of frequencies. The Fourier transform is in general a complex

function that can be written as follows:

F (ω) = |F (ω)|ejθ(ω) (1.23)

3We want to extend out periodic signal into a non-periodic one
4In fact, one can think that equation (1.21) is a forward transform or a transform to go

to a new domain (the frequency domain), whereas equation (1.22) is an inverse transform
or a transform to come back to the original domain (time) from the frequency domain.
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where |F (ω)| is the amplitude spectrum and θ(ω) is the phase spectrum.

We will come back to the importance of amplitude and phase when dealing

with seismic signal.

1.2.1 Properties of the FT

We are not going to prove these properties, most of them can be proved by

using the definition of the FT.

We shall use the following notation to indicate that F (ω) is the FT of f(t):

f(t) ↔ F (ω)

Symmetry.

F (t) ↔ 2πf(−ω)

Linearity. If

f1(t) ↔ F1(ω)

f2(t) ↔ F2(ω)

then

f1(t) + f2(t) ↔ F1(ω) + F2(ω)

Scale. If

f(at) ↔ 1

|a|F (
ω

a
)

Convolution. If

f1(t) ↔ F1(ω)

f2(t) ↔ F2(ω)

then

∫ ∞

−∞
f1(u)f2(t− u)du↔ F1(ω)F2(ω)
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or in a few words:time convolution ↔ frequency multiplication.5

5This is a very important property and we will make extensive use of it. Most physical
systems can be described as linear and time invariant systems, this leads to a convolution
integral.



1.2. THE FOURIER TRANSFORM 9

Convolution in frequency. Similar to the previous one, but now:

f1(t).f2(t) ↔
1

2π

∫ ∞

−∞
F1(v)F2(ω − v)dv

or in a few words:time multiplication ↔ frequency convolution.6

Time delay. I like this one, we use it in seismic migration to extrapolate

wavefield down into the earth.

f(t− τ) ↔ F (ω)e−jωt0

Modulation. This property makes you AM radio works.

f(t)ejω0t ↔ F (ω − ω0)

Time derivatives. This is used to compute derivatives (actually, using

the discrete Fourier transform which we haven’t seen)

df(t)

dt
↔ jωF (ω)

It is clear that to take the derivative of f(t) is equivalent to amplify the high

frequencies.

The property can be extended for higher derivatives

dnf(t)

dtn
↔ (jω)nF (ω)

1.2.2 The FT of some signals

A Boxcar

We will compute the FT of the following function (a boxcar):

f(t) =

{
1 |t| < T/2
0 otherwise

(1.24)

We substitute f(t) into the definition of the FT (equation (1.21)) and solve

the integral:

6We will use this property to estimate the FT of signal that has been recorded in a
finite temporal window. See (1.2.3)
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F (ω) =
∫ T/2
−T/2 1.e−jωtdt

= 1
−jω (e−jωT/2 − ejωT/2)

= Tsinc(ωT/2)

(1.25)

where in last equation sinc(x) = sin(x)/x. The FT of the boxcar function

is a sinc function. We will come latter to the importance of the knowing the

FT of the box car function when dealing with the spectrum of signal that

have been truncated in time.

In Figures (4.102) and (1.2.2), I have displayed the Fourier transform of two

boxcar functions of width T = 10 and 20 secs, respectively.
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Delta function:

f(t) = δ(t)

the δ function is defined according to

∫
g(u)δ(u)du = g(0)

It easy to see from the above definition that the FT of the delta function is

F (ω) =

∫ ∞

−∞
δ(t)e−jωtdt = 1

δ(t) ↔ 1

Similarly, if we apply the “time delay” property

we have

δ(t − τ) ↔ 1.e−jωτ

It is clear that the δ function has a continuous amplitude spectrum with all

the frequencies. This is also the ideal seismic wavelet that one would like to

have in seismic exploration.

A complex sinusoid:

We can combine the FT of the delta function with the symmetry property

to obtain the FT of a complex sinusoid:

We have seen that

δ(t − τ) ↔ 1.e−jωτ

If we apply the symmetry property

F (t) ↔ 2πf(−ω)

we end up with



14 CHAPTER 1. FOURIER ANALYSIS

ejω0t ↔ 2πδ(ω − ω0)

In other words, the FT of complex sinusoid of frequency ω0 is a delta at the

corresponding frequency ω = ω0.

1.2.3 Truncation in time

Given f(t) t ∈ (−∞,∞), with f(t) ↔ F (ω), how do we obtain the FT of

the signal when the signal is recorded in a finite interval [−T/2, T/2]?.
We can call fT (t) the observed signal in [−T/2, T/2] and f(t) the original

signal in (−∞,∞), in this case is easy to see that

fT (t) = f(t).bT (t) (1.26)

where bT (t) is a box function like the one analyzed in (1.2.2).

Using the frequency convolution theorem (1.2.1) we can write

FT (ω) =
1

2π

∫ ∞

−∞
F (v)BT (ω − v)dv =

1

2π
F (ω) ∗BT (ω) (1.27)

where BT (ω) = Tsinc(ωT/2). This is remarkably interesting result (it is?).

We are saying that our observation window is affecting the FT of the signal.

We want to know F (ω) but since we are recording the signal in a finite

interval, we have only access to FT (ω). The latter is a distorted version of

F (ω).

FT (ω) =
1

2π
T

∫ ∞

−∞
F (u)sinc((ω − u)T/2)du . (1.28)

It is clear from the above that one does not see F (ω) but its convolution

with a sinc function.

If f(t) = ejω0t it is easy to see that the truncated version of the complex

sinusoid has the following FT:

FT (ω) =
1

2π
T

∫ ∞

−∞
2πδ(ω − ω0)sinc((ω − u)T/2)du . (1.29)



1.3. SYMMETRIES 15

FT (ω) = Tsinc((ω − ω0)T/2) . (1.30)

This is a sinc function with a peak at ω = ω0.

In Figure (1.2.3) we portray the superposition of 2 complex sinusoids of the

form

f(t) = ejω1t + ejω2t , t ∈ [−10, 10] secs .

The FT of such a signal (if measured in an infinity interval) is given by two

delta functions at frequencies ω1 and ω2. But since we are observing the

signal in a finite length interval we have to convolve the ideal FT of f(t) with

the FT of the boxcar function. In this example I have chosen the following

frequencies ω1 = 0.5 rad/sec and ω2 = 1. rad/sec.

1.3 Symmetries

Before continuing with the Fourier transform and its applications a few

words about the symmetries of the FT are needed. This is very important in

the discrete case at the time of writing computer codes to process geophysical

data.

Let us start with the definition of the Fourier transform,

F (ω) =

∫
f(t)e−iωtdt (1.31)

If the signal f(t) is a real signal, we can write:

F (ω) = R(ω) + iG(ω) (1.32)

where

R(ω) =

∫
f(t)cos(ωt)dt (1.33)

and

G(ω) = −
∫
f(t)sin(ωt)dt (1.34)
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Figure 1.3: The Fourier transform of a the superposition of two complex
sinusoids observed in a window of length T = 20 secs. Up: real part of the
signal. Center: Imaginary part of the signal. Bottom: Amplitude of the
Fourier Transform (|F (ω)|).

Since the cos is an even function and the sin an odd function:

R(ω) = R(−ω) (1.35)

G(ω) = −G(−ω) (1.36)

If you know F (ω) for ω ≥ 0, you can compute the F (ω) for ω < 0 by



1.3. SYMMETRIES 17

applying the above identities.

In fact, we can always write:

F (ω) = R(ω) + iG(ω) (1.37)

F (−ω) = R(−ω) + iG(−ω) (1.38)

by combining last equation with equation (1.36) we obtain

F (−ω) = R(ω) − iG(ω) . (1.39)

The last equation can be used to compute the negative semi-axis of the

Fourier transform. This property is often referred as the Hermitian symme-

try of the FT. You can also write:

F (−ω) = F (ω)∗

where the ∗ is used to denote complex conjugate. This property is only valid

for real time series. This is why, we often plot one semi-axis (in general the

positive one) when displaying the Fourier Spectrum of a real signal.

The symmetry properties of the real and imaginary parts of the Fourier

transform can also be used to obtain the symmetries properties of the am-

plitude and phase of the Fourier transform:

F (ω) = |F (ω)|eiθ(ω) .

It is east to prove that the amplitude is an even function:

|F (ω)| = |F (−ω)| (1.40)

and that the phase is an odd function

θ(ω) = −θ(−ω) . (1.41)
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1.4 Living in a discrete World

So far we have described the FT of continuous (analog) signals. Now, we will

start to study discrete signals or time series. This is the connection between

the continuous and the discrete world. When working with real data we will

use discrete signals. In Chapter 2, we will analyze discrete signals using the

discrete Fourier transform and the Z transform.

We will designate f(t) the analog signal and fs(t) the associated discrete

signal. One can think that fs is obtained by sampling f(t) every ∆t seconds

fs(t) = f(t)
∞∑

k=−∞

δ(t− k∆t) . (1.42)

By the frequency convolution property we can obtain the FT of the sampled

signal:

Fs(ω) =
1

2π
F (ω) ∗ ω0

∞∑

k=−∞

δ(ω − kω0) , ω0 =
2π

∆T
(1.43)

where in last equation I have assumed that we know how to compute the

FT of the sampling operator
∑∞

k=−∞ δ(t − k∆t).

After a few mathematical manipulations, it is easy to see that

Fs(ω) =
1

T

∞∑

k=−∞

F (ω − nω0) (1.44)

One can observe that the FT of the sampled signal is a periodic function

with period ω0.

If one wants to compute Fs(ω) in such a way that F (ω) can be completely

recovered, the signal f(t) must be a band-limited signal. This is a signal

where the spectral components outside the interval [−ωmax, ωmax] are zero.

If the following condition is satisfied

ω0 ≥ 2ωmax
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there is no overlap of spectral contributions, and therefore Fs(ω) , ω ∈
[−wwmax, wmax] is equivalent, whithin a scale factor 1/T , to the FT of

the analog signal F (ω). The last contidion can be re-written as follows:

2π

∆T
≥ 2 × 2πfmax

which reduces to

∆T ≤ 1

2fmax
.

The last equation is also designated as the sampling or Nyquist theorem.

It basically tells us that to recover the FT of the original signal we need to

sample the data according to the last inequalitiy.

Real world signals are continuous, and become discrete after going trough

acquisition systems (i.e., digital seismograph). To avoid alias, analog filter

are usually placed in the acquisition system. The data are first band-limited

using analog filters, then sampled and finally, stored digitally.
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Sampler

t (seconds) Samples n 

f(t)                                                                        f0, f1, f2, f3, f4, ........ fN
Continuous Signal                                                  Time series 

Figure 1.4: Discretization of a continuous signal.

The aliasing effect is described in Figures (1.5)-(1.8). Figure (1.5) corre-

sponds to the Fourier transform of a continuous signal. we can observed

that to properly recover the Fourier transform of the continuous signal we

need to sample our data according to w0 ≤ 2wmax. This is true for Figures

(1.6) and (1.7). In these two figures it easy to see that the Fourier trans-

form of the original (continuous) signal is well represented by the Fourier

transform of the discretized signal in the interval [−ωmax, ωmax]. In Figure

(1.8) we portray an example where the data has been under-sampled and,

therefore, the Fourier transform of the continuous signal cannot be recovered

from the Fourier transform of the discretized signal.

1.5 References

Papoulis A., Fourier Integral and Its Applications, McGraw-Hill
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Figure 1.5: The Fourier transform of a continuous signal.
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Figure 1.6: The Fourier transform the continuous signal after being dis-
cretized, in this case ωmax = 10 and ω0 = 30
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Figure 1.7: The Fourier transform the continuous signal after being dis-
cretized, in this case ωmax = 10 and ω0 = 20. The Fourier transform of the
continuous signal is perfectly represented in the interval [−wmax, wmax].
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Figure 1.8: The Fourier transform the continuous signal after being dis-
cretized, in this case ωmax = 10 and ω0 = 15. The signal is aliased. Note
that Nyquist theorem is not satisfied. The Fourier transform of the contin-
uous signal cannot be recovered from the Fourier transform of the sampled
signal.
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Chapter 2

Z-transform and Convolution

In this chapter we will introduce a new concept that is very useful at the

time of dealing with discrete signals and linear systems. The Z transform

permits one to do what the Fourier transform to continuous signals. Later

we will also find out that the Z transform is related to the discrete Fourier

Transform, this is discrete cousin of the Fourier transform studied in Chapter

1.

2.1 Linear Systems

Linear systems are useful to define input/output relationships for continuous

and discrete signals. Assume that we have a linear system where the input

to the system is a continuous signal x(t) and the output is given by y(t)

x(t) → y(t)

If the system is linear the following properties must be satisfied:

P1 :

αx(t) → αy(t) .

P2: If

x1(t) → y1(t)

and

25
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x2(t) → y2(t)

then

x1(t) + x2(t) → y1(t) + y2(t)

.

P3: Properties P1 and P2 can be combined in a single property:

αx1(t) + βx2(t) → αy1(t) + βy2(t) .

We will say that the linear system is time invariant if and only if:

x(t− T ) → y(t− T )

and this is true for any arbitrary T . In other words, if the input signal is

delayed by an amount T , the output signal is delayed by the same amount.

We will represent our linear system as follows:

H[x(t)] = y(t) . (2.1)

If the system is linear, the function H has the following expression:

y(t) = H[x(t)] =

∫ ∞

−∞
h(t, τ)x(τ)dτ . (2.2)

It is easy to prove that the above expression defines a linear system. When

the system is linear and time invariant the following property should also

be satisfied:

y(t− T ) = H[(x(t− T )] . (2.3)

In this case we need to rewrite equation (2.2) in order to satisfy the afore-

mentioned requirement. In this case the Green function of the system h(t, τ)

is given by:

h(t, τ) = h(t− τ) . (2.4)
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If we replace h(t− τ) in equation (2.2) we end up with the following expres-

sion:

y(t) =

∫ ∞

−∞
h(t− τ)x(τ)dτ (2.5)

It is clear that the above equation defines a linear system, but it is not clear

that the system is time invariant. To prove that (2.5) corresponds to the

i/o relationship of a time invariant linear system we will apply the following

change of variables:

u = t− τ .

Then,

y(t) = −
∫ −∞

∞
h(u)x(t − u)du =

∫ ∞

−∞
h(u)x(t− u)du = H[x(t)] , (2.6)

substituting t by = t− T

y(t− T ) =

∫ ∞

∞
h(u)x(t − T − u)du = H[x(t− T )] (2.7)

we have proved that the convolution integral given in equation (2.5) defines a

time invariant linear system. Using to the convolution theorem, “convolution

in the time domain −→ multiplication in the frequency domain”, we can

rewrite the convolution integral as follows:

Y (ω) = H(ω) .X(ω) .

The function h(t) is also called the impulse response of the system. The

Fourier transform of the impulse response, H(ω), is the transfer function of

the system. If the input to a system is given by x(t) = δ(t) the output is

given by y(t) = h(t). This statement can be easily proved by substituting

x(t) = δ(t) into the convolution integral:

y(t) =

∫ ∞

−∞
h(u)δ(t − u)du = h(t) , (2.8)

It turns out that if you do not know h(t), it can be obtained by exciting

the system with a δ function and measuring the output signal y(t) = h(t)

(Figure 2.1).
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x1(t) y1(t)

y2(t)x2(t)

x1(t)+x2(t) y1(t)+y2(t)

h

h

h

Figure 2.1: A linear System, h is the impulse response of the system.
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h

h

y(t)

(t)δ

x(t)

h(t)(t)

(t)

x(t) : Input,      y(t): Output,     h(t): Impulse response

Time Invariant Linear System 

Figure 2.2: A continuous linear time invariant system. The input x(t)
produces an output signal denoted by y(t). If the input to the system is
x(t) = δ(t) the output is y(t) = h(t). The signal h(t) is the impulse re-
sponse of the system.
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x : Input,      y: Output,     h: Impulse response

 (discrete case)

1,0,0,0,0,...

Time Invariant Linear System 

x0,x1,x2,x3,... h0,h1,h2,h3,.... y0,y1,y2,y3,...

h0,h1,h2,h3,.... h0,h1,h2,h3,....

Figure 2.3: A discrete linear system. The input signal is a discrete signal xn

and the output signal is the discrete signal yn. When the system is excited
with a unit impulse signal δn the output is the impulse response hn.
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2.1.1 Discrete convolution

If the system is discrete, this is a system where the input and output sig-

nals are discrete signals (time series), the convolution integral becomes a

summation:

yk =
∞∑

n=−∞

hnxk−n (2.9)

In general, we will be concerned with finite length signals. We will say that

xn, n = 0 : NX − 1 is a signal of length NX

yn, n = 0 : NY − 1 is a signal of length NY

hn, n = 0 : NH − 1 is a signal of length NH

In this case the convolution sum will be composed only of samples defined

in the above intervals, i.e., xn, n = 0 : NX − 1,

yk =
p2∑

n=p1

hk−nxn , (2.10)

where p1 and p2 indicate the finite summation limits.

Assuming that x = [x0, x1, x2, x3, x4] and h = [h0, h1, h2], and after carrying

out the convolution sum,

y0 = x0h0

y1 = x1h0 +x0h1

y2 = x2h0 +x1h1 +x0h2

y3 = x3h0 +x2h1 +x1h2

y4 = x4h0 +x3h1 +x2h2

y5 = x4h1 +x3h2

y6 = x4h2

(2.11)

The output time series is given by y = [y0, y1, y2, ..., y7].
1

Note that the above system of equation can be written in matrix form as

follows:

1Please, take a look at the length of the new time series NY = NX + NH − 1.
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



y0

y1

y2

y3

y4

y5

y6





=





x0 0 0
x1 x0 0
x2 x1 x0

x3 x2 x1

x4 x3 x2

0 x4 x3

0 0 x4








h0

h1

h2



 (2.12)

2.1.2 An algorithm to compute the convolution sum

One can see that the convolution sum can be carried out as a matrix times

vector multiplication. But we will see that there is a cheaper way of doing

it. I will do the following substitution k − j = n, in equation (2.10)

yj+n =
NH−1∑

j=0

hjxn , j = 0 : NX − 1 . . (2.13)

The latter is the expression that you will need to use at the time of coding

up a convolution sum.

Remember that F77 (Fortran) and MATLAB have a vector indexing system

that looks like:

x(1) x(2) x(3) x(4) ..... x(NX)

Where x0 =x(1).... xNX−1=x(NX). This has to be taken into account at

the time of writing a code. As an example I provide a MATLAB code

to perform the convolution of two series. You can also use the built-in

MATLAB function conv to perform the same task 2.

2Use “ help conv ”.
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Convolution in MATLAB

%

% Convolution of x with h in MATLAB

%

x = [2, 1, 2, 3, -1];

h = [2,-1, 2];

NX = length(x);

NH = length(h);

NY = NX + NH - 1;

y = zeros(1,NY);

for j = 1:NH

for n = 1:NX

y(j+n-1) = y(j+n-1) + h(j) * x(n);

end

end

The same code in Fortran 77 looks like:

subroutine(nx,x,nh,h,ny,y)

c

c convolution of two time series

c

real x(100),y(100),h(100)

ny = nx+nh-1

do k=1,ny

y(k) = 0.

enddo

do j = 1,NH

do n = 1,NX

y(j+n-1) = y(j+n-1) + h(j) * x(n)

enddo

enddo

return
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2.2 The Z transform

A digitized seismogram (a gravity profile, a time series of monthly averages

of temperature, etc) is a sequential collection of samples (a time series). For

instance a 4 points times series is represented by the following collection of

samples:

x0, x1, x2, x3 (2.14)

In what follows xn indicates the sample at time n∆t. This signal can be

obtained by uniformly sampling a continuous signal periodically every ∆t

seconds.

The z transform of xk, k = 1, 2, . . . is defined as

X(z) =
∞∑

k=0

xnz
n (2.15)

For a finite length time series xk, k = 0, . . . , N − 1 we write

X(z) =
N−1∑

k=0

xnz
n (2.16)

A simple example is a time series composed of 4 samples

x = 4
↑
, 12,−1,−3 , (2.17)

where the arrow indicated the sample x0. The z transform of this series is

a polynomial in z of degree 3:

X(z) = 4 + 12z − 1z2 + 3z3 . (2.18)

Suppose that we have a non-casual sequence3

3I will use the arrow to indicate the sample corresponding to t = 0, no arrow indicates
that the first sample is the t = 0 sample.
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x = −1, 3, 4, 3
↑
, 5, 6,−10 (2.19)

In this case the z transform is given by

X(z) = −z−3 + 3z−2 + 4z−1 + 3 + 5z + 6z2 − 10z3 . (2.20)

2.2.1 Convolution and the Z-transform

Let us examine the example given in equation (2.11). We have two times

series, x = [x0, x1, x2, x3, x4] and h = [h0, h1, h2]. The Z-transforms of these

series are:

X(z) = x0 + x1z + x2z
2 + x3z

3 + x4z
4

H(z) = h0 + h1z + x2z
2

Now, let us compute the product of the above polynomials:

X(z).H(z) = x0h0 + (2.21)

(x1h0 + x0h1)z +

(x2h0 + x1h1 + x0h2)z
2 +

(x3h0 + x2h1 + x1h2)z
3 +

(x4h0 + x3h1 + x2h2)z
4 + (2.22)

(x4h1 + x3h2)z
5 +

(x5h2)z
6

From equation (2.10) one can see that the coefficient of this new polynomial

are the samples of the time series y = [y0, y1, . . . , y6] obtained by convolution

of x and h, in other words, X(z) .H(z) is the also the Z transform of the

time series y:

Y (z) = X(z) .H(z) . (2.23)
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Therefore, to convolve two time series is equivalent to multiply their Z trans-

forms.

2.2.2 Deconvolution

We will come back to this point when dealing with seismic signals. It is clear

that the convolution process in the Z-domain entails the multiplication of

two polynomials. This is only feasible for short time series.

In the convolution process two time series are convolved to produce a new

time series:

yk = hk ∗ xk → Y (z) = H(z) .X(z)

In the deconvolution process we will attempt to estimate xk from yk and xk.

In the Z-domain this is equivalent to polynomial division:

X(z) =
Y (z)

H(z)
. (2.24)

The inverse operator is defined as:

F (z) =
1

H(z)
, (2.25)

therefore, the signal X(Z) can be recovered

X(z) = F (z) . Y (z) (2.26)

It is clear that if one is capable of finding F (z) =
∑

k fkz
k, then the coef-

ficients fk define the discrete inverse filter in time domain that recovers xk

via convolution:

xk = fk ∗ yk . (2.27)

This is quite important in seismological data processing. We will assume

that the observed seismogram is composed of two time series: the Earth’s

impulse response, and the seismic wavelet (also called the source function).

sk: Seismogram (this is what you measure)

qk: Earth’s impulse response (this is your unknown)
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wk: Wavelet (well... assume that you know it!)

where

sk = wk ∗ qk . (2.28)

In the deconvolution process we attempt to design an inverse to remove the

wavelet.

sk = wk ∗ qk .→ S(z) = W (z).Q(z)

if we apply the inverse filter of the wavelet to both sides of last equation we

have

fk ∗ sk = fk ∗ wk ∗ qk .→ F (z).S(z) = F (z).W (z).Q(z)

it is clear that if F (z) = 1
W (z) the output sequence is the impulse response

(our unknown)

qk = fk ∗ sk .

In the following sections we will analyze the problem of inverting the unde-

sired signal (wk).

2.3 Elementary Signals: Dipoles

In this section we will analyze the deconvolution of very simple signals. We

will see that by understanding how to work with simple signals we will be

capable of dealing with more complicated signals.

2.3.1 Minimum phase dipoles

A simple manner of visualizing the properties of a time series in the z domain

is by decomposing the polynomial into dipoles or elementary functions of

the type

1 + az (2.29)
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As an example, we compute the Z-transform of the series x = [4, 12,−1, 3]:

X(z) = 4 + 12z − 1z2 + 3z3 = 4(1 +
1

2
z)(1 − 1

2
z)(1 + 3z) . (2.30)

We have already seen that two multiply the Z-transform of two time series

is equivalent to convolve the time series in the time domain. Therefore, the

above expression can also be expressed as convolution of several time series:

4, 12,−1, 3 = 4[ (1,
1

2
) ∗ (1,−1

2
) ∗ (1, 3z) . (2.31)

In order to simplify the problem, we will analyze the properties of a single

dipole. The extension to time series that require the multiplication of several

dipoles is straightforward.

Let us assume that the dipole, which I will call D(z), is given by

D(z) = 1 + az . (2.32)

This dipole corresponds to a time series composed of two elements: 1, a.

Now, let assume that we want to compute the inverse of the dipole, in other

words we would like to compute a function F (z) such that

F (z)D(z) = 1 . (2.33)

This problem can be solved by expanding the inverse of the dipole in a series:

F (z) =
1

D(z)
=

1

1 + az
, (2.34)

if |a| < 1 the denominator can be expanded according to the following

expression 4:

F (z) = 1 − az + (az)2 − (az)3 + (az)4 . . . (2.35)

4A geometric series.
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Since |a| < 1 the above series is a convergent series. F (z) is the z transform

of the time series fk, k = 0, . . . ,∞:

1
↑
,−a, a2,−a3, a4, . . . (2.36)

which represent the inverse filter of the dipole. The convolution of the dipole

with the filter yields

(1
↑
, a) ∗ (1

↑
,−a, a2,−a3, a4, . . .) = 1

↑
, 0, 0, 0, 0, 0, . . . (2.37)

which represent a single spike at n = 0.

The dipole (1, a) is a minimum phase sequence provided that |a| < 1. We

have shown that a minimum phase dipole has a casual inverse given by

1,−a, a2,−a3, a4, . . . If |a| ≈ 1 < 1 the coefficients of the inverse filter will

slowly tend to zero. On the other hand if |a| ≈ 0 only a few coefficient will

be required to properly model the inverse of the dipole.

We can visualize this fact with a very simple example. Let us compute the

inverse of the following dipoles: (1,0.9) and (1, 0.01). In the first case we

have a = 0.9:

F (z) =
1

1 + 0.9z
= 1 − 0.9z + 0.81z2 − 0.729z3 + 0.6561z4 . . . . (2.38)

In the second case, we have:

F (z) =
1

1 + 0.1z
= 1 − 0.1z + 0.01z2 − 0.001z3 + 0.0001z4 . . . . (2.39)

It is clear that when a = 0.1 we can truncate our expansion without affecting

the performance of the filter. To show the last statement we convolve the

dipoles with their truncated inverses. In both examples, we truncate the

inverse to 5 coefficients:

(1, 0.9) ∗ (1,−0.9, 0.81,−0.729, 0.6561) = (1, 0.0, 0.0, 0.0, 0.59) (2.40)
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(1, 0.1) ∗ (1,−0.1, 0.01,−0.001, 0.0001) = (1, 0.0, 0.0, 0.0, 0.0) . (2.41)

It is clear that the truncation is negligible when a = 0.1. This is not true

when a ≈ 1. In this case a long filer is needed to properly invert the

dipole. The aforementioned shortcoming can be overcome by adopting a

least squares strategy to compute the inverse filter (this is the basis of spiking

deconvolution.)

So far we have define a minimum phase dipole as a signal of the type (1, a)

where |a| < 1. It is important to stress that the Z-transform of this signal

has a root, ξ, which lies outside the unit circle,

X(z) = 1 + az ⇒ X(ξ) = 1 + aξ = 0 ⇒ ξ = −1

a
(2.42)

since |a| < 1, the root satisfies the following |ξ| > 1.

A seismic signal is more complicated than a simple dipole. But we can always

factorize the Z-transform of the signal in terms of elementary dipoles. If the

signal is minimum phase, the decomposition is in terms of minimum phase

dipoles

X(z) = x0 +x1z+x2z
2 +x3z

3 . . . = A(1+a1z)(1+a2z)(1+a3z) . . . . (2.43)

If |ai| < 1, ∀i, the signal is a minimum phase signal. In this case all the

zeros lie outside the unit circle

X(ξ) = 0 ⇒ ξi = − 1

ai
⇒ |ai| < 1 ⇒ |ξi| > 1 . (2.44)

Now, let us assume that X(z) is a minimum phase signal of length N , that

can be factorized in terms of minimum phase dipoles. The inverse filter F (z)

of X(z) must satisfied the following expression:
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X(z)F (z) = 1 (2.45)

(1 + a1z)(1 + a2z)(1 + a3z) . . . . F (z) = 1 .

From the above equation where we can write

F (z) = (1 + a1z)
−1(1 + a2z)

−1(1 + a3z)
−1 . . . (2.46)

= [(1 − a1z + (a1z)
2 − (a1z)

3 . . .][(1 − a2z + (a2z)
2 − (a2z)

3 . . .]

[(1 − a3z + (a3z)
2 − (a3z)

3 . . .] . . . .

It is clear that the inverse operator can be written as

f0, f1, f2, f3, . . . = (1,−a1, a
2
1,−a3

1) ∗ (1,−a2, a
2
2,−a3

2) ∗ (1,−a3, a
2
3,−a3

3) ∗ . . .
(2.47)

In Figures 2.4, 2.5 and 2.6, we examine the inverse of various minimum phase

dipoles. In the first case the root is close to the unit circle, and therefore

the inverse filter requires a large number of coefficient to avoid truncation

artifacts. It is clear in the output sequence (the convolution of the dipole

with the filter) that the truncation has introduced a spike at the end of the

sequence. In Figures 2.5 and 2.6, we have used dipoles with roots ξ = 2 and

ξ = 10, respectively. In these examples the truncation artifacts are minimal.

2.3.2 Maximum phase dipoles

Elementary signal of the form (1, b), |b| > 1 are called maximum phase

dipoles. A maximum phase dipole has a zero inside the unit circle:

D(z) = 1 + bz ⇒ D(ξ) = 1 + bξ = 0 ⇒ ξ = −1/b . (2.48)

Since |b| < 1, it is easy to see that |ξ| < 1.

In this section we will prove that the inverse of a maximum phase dipole

is a non-casual sequence. The inverse of the maximum phase dipole can be

computed by expanding the denominator in series
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Dipole, d = (1,0.9) Truncated inverse filter, f Output,  d ⊗  f

Figure 2.4: Inversion of minimum phase dipoles. The slow convergence of
the inverse filter is a consequence of having a zero close to the unit circle.

Dipole, d = (1,0.5) Truncated inverse filter, f Output,  d ⊗  f

Figure 2.5: Inversion of minimum phase dipoles

F (z)D(z) = 1 ⇒ F (z) =
1

D(z)
=

1

1 + bz
(2.49)

If last equation is expanded in a series of positive powers of z we have

1

1 + bz
= 1 − bz + (bz)2 − (bz)3 . . . (2.50)
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Dipole, d = (1,0.1) Truncated inverse filter, f Output,  d ⊗  f

Figure 2.6: Inversion of minimum phase dipoles, in this case the zero of the
dipole is far from the unit circle, this explains the fast convergence of the
inverse filter.

The later is a series that does not converge; the magnitude of the coefficients

of the operator (1,−b, b2,−b3 . . .) increases with time. The trick to overcome

this problem is to compute a stable non-casual operator. First, we rearrange

expression (2.49)

F (z) =
1

1 + bz
=

1

bz(1 + (bz)−1)
(2.51)

this expression admits an stable expansion of the form

F (z) = (bz)−1(1 − (bz)−1 + (bz)−1 − (bz)−3 . . .) . (2.52)

Now the inverse is stable and non-casual, the associated operator is given

by

f = . . . ,−b−3, b−2,−b−1, 0
↑

(2.53)

The following example will clarify the problem. First, given the maximum

phase dipole (1, 2) we compute the non-casual inverse sequence (truncated

to 6 coefficients):

f = (−0.0156, 0.0312,−0.0625, 0.125,−0.25, 0.5, 0
↑
) (2.54)
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Dipole, d = (1,2)

0

Truncated inverse filter (non−casual) , f

0

Output,  d ⊗  f

0

Figure 2.7: Maximum phase dipole, its non-casual truncated inverse, f , and
the output d ∗ f .

the convolution of f with the maximum phase dipole produces the following

output sequence

d ∗ f = (−0.0156, 0.0312,−0.0625, 0.125,−0.25, 0.5, 0
↑
) ∗ (1

↑
, 2)(2.55)

= (−0.0156, 0, 0, 0, 0, 0, 1
↑
, 0)
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2.3.3 Autocorrelation function of dipoles

The autoccorelation function of a sequence with z-transform X(z) is defined

as

R(z) = X(z)X∗(z−1) (2.56)

In this section we will analyze some properties of minimum and maximum

phase dipoles that are very useful at the time of designing deconvolution

operators.

We will consider two dipoles a minimum phase dipole of the form (1, a),

|a| < 1 and a maximum phase dipole of the form (a∗, 1)5. In the z domain

we have

Dmin(z) = 1 + az (2.57)

Dmax(z) = a∗ + z (2.58)

The autocorrelation function for the minimum phase sequence is given by:

Rmin(z) = a∗z−1 + (1 + |a|2) + a z , (2.59)

Similarly, the autocorrelation function for the maximum phase dipole is

given by

Rmax(z) = a∗z−1 + (1 + |a|2) + a z . (2.60)

We have arrived to a very important conclusion

Rmax(z) = Rmin(z) = R(z) (2.61)

5Note that for real dipoles, a∗ = a
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or in other words, two different sequences can have the same autocorrelation

function. The autocorrelation sequence in both cases is the following time

series

a∗, (1 + a2)
↑

, a (2.62)

or

rk =






a if k = 1
1 + a2 if k = 0
a∗ if k = −1
0 otherwise

(2.63)

If the dipoles are real (a = a∗), the autocorrelation function is a a symmetric

sequence about zero. Note that the autocorrelation function R(z) is the Z-

transform of the autocorrelation sequence.

R(z) = r1z
−1 + r0 + r1z

−1 = a∗z−1 + (1 + a2) + az−1 (2.64)

In general for more complicated signals (so far we only considered dipoles),

the autocorrelation function of the the signal is the Z-transform of the au-

tocorrelation sequence of the signal given by

rk =
∑

n

x∗nxn+k , (2.65)

R(z) = X(z) .X∗(z−1) , (2.66)

where k is the time-lag of the autocorrelation function.

Let’s assume that we are only able to measure the autocorrelation of a dipole.

Given the autorelation of the dipole you are asked to find the associated

dipole. It is clear that you have two possible solutions. One is the minimum

phase dipole; the other is the maximum phase dipole. It is also true that this
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two sequences have the same amplitude spectrum. We define the amplitude

spectrum.

R(ω) = R(z)|z=e−iω (2.67)

or

R(ω) = [X(z) .X∗(z−1)]z=e−iω (2.68)

To evaluate the amplitude spectrum of the signal we replace z by e−iω. This

is equivalent to use the discrete Fourier transform instead of the z transform.

We will come back to this point in Chapter 3. If the signal is a minimum

phase dipole:

Dmin(z) = 1 + az ⇒ z = e−iω ⇒ Dmin(ω) = 1 + ae−iw . (2.69)

Whereas for the maximum phase dipole we have

Dmax(z) = a+ z ⇒ z = e−iω ⇒ Dmax(ω) = a+ 1e−iw (2.70)

Now we are in condition of evaluating the amplitude and phase spectrum of

the minimum and maximum phase dipoles:

RDmin(ω) =
√

1 + 2a cos(ω) + a2 (2.71)

θmin(ω) = arctan(
a sin(ω)

1 + a cos(ω)
) (2.72)

For the maximum phase signal we have

RDmax(ω) =
√

1 + 2a cos(ω) + a2 (2.73)
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Figure 2.8: Amplitude and phase spectrum of a minimum phase dipole 1+az
and a maximum phase dipole a ∗ +z, |a| < 1.

θmax(ω) = arctan(
sin(ω)

a+ cos(ω)
) (2.74)

In Figure (2.8) we portray the amplitude and phase spectrum for a minimum

phase dipole of the form (1, 0.5) and a maximum phase dipole (0.5, 1). Note

that the amplitude spectra of these signals are equal.
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2.3.4 Least squares inversion of a minimum phase dipole

We have already seen that one of the problems of inverting a dipole via an

expansion of the denominator in terms of a series is that the inverse filter

can result in a long operator. This is particularly true when we have a zero

close to the unit circle.

Our problem is to find a filter where, when applied to a dipole, it’s output

resembles the ideal output one would have obtained by using an infinite

number of terms in the series expansion of the filter.

In our case, we want to invert the minimum phase dipole (1, a), |a| < 16. In

a preceding section we found an expression for the ideal inverse filter, the z

transform of the ideal inverse filter satisfies the following equation:

D(z)F (z) = 1 . (2.75)

Now, our task is to construct a finite length filter that with the following

property

D(z)FN (z) ≈ 1 , (2.76)

where FN (z) denotes the z transform of the finite length operator. The

above equation can be written in the time domain as follows (assuming

N = 3),

(1, a) ∗ (f0, f1, f2) ≈ (1
↑
, 0, 0, 0) . (2.77)

The latter can be written in matrix form as follows:





1 0 0
a 1 0
0 a 1
0 0 a








f0

f1

f2



 ≈





1
0
0
0



 . (2.78)

6Let’s assume that a = a∗, (a is real)
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The last system of equations corresponds to an over-determined system of

equation that can be solved using least squares. In order to avoid notational

clutter we will represent the last system as follows

Cf ≈ b , (2.79)

where C is the matrix that contains the dipole properly padded with zeros

in order to properly represent the convolution (∗). The unknown inverse

filter is denoted by the vector f and the desire output by d. It is clear that

the solution vector is the one that minimized the mean squared error

ǫ = ||Cf − b||2 . (2.80)

The least squares solution of this system is found by solving the following

system of normal equations

CT Cf = CT b . (2.81)

Now the we have a system of normal equations (a square system) that can

be inverted by any method. The resulting filter is

f = R−1CT b , (2.82)

where R = CT C. The story does not end here, it turns out that the matrix

R has a special structure,

R =




1 + a2 a 0
a 1 + a2 a
0 a 1 + a2



 . (2.83)

One can see that each row of the matrix R is composed by elements of the

autocorrelation sequence given by equation (2.63)
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Dipole, d = (1,0.9)

0

Least squares inverse filter , f

0

Output,  d ⊗  f

0

Figure 2.9: Inversion of a minimum phase dipole using least squares.

Dipole, d = (1,0.5)

0

Least squares inverse filter , f

0

Output,  d ⊗  f

0

Figure 2.10: Inversion of a minimum phase dipole using least squares.

R =




r0 r1 0
r1 r0 r1
0 r1 r0



 . (2.84)

The above matrix is a Toeplitz form. One interesting feature of a Toeplitz

matrix (in this case a Hermitian Toeplitz matrix) is that only one row of

the matrix is needed to define all the elements of the matrix. This special

symmetry is used by a fast algorithm, the Levinson algorithm, to invert the

matrix R.

It is interesting to note that the condition number of the Toeplitz matrix7

7The condition number of the matrix R is the ratio λmax/λmin where λmax and λmin

are the largest and smallest eigenvalues of R, respectively. A large condition number
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Figure 2.11: Condition number of the Toeplitz matrix versus NF (filter
length). The dipole is the minimum phase sequence (1, 0.5).

increases with NF (the filter length). This is shown in Figure (2.11). Simi-

larly in Figure (2.12) we portray the condition number of the Toeplitz matrix

for a dipole of the form (1, a) for different values of the parameter a. It is

clear that when a → 1 the zero of the dipole moves towards the unit circle

and the system of equation becomes ill-conditioned.

indicates that the problem is ill-conditioned (numerical problems will arise at the time of
inverting the matrix.)
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Figure 2.12: Condition number of the Toeplitz matrix versus a for a mini-
mum phase dipole (1, a). The length of operator is fixed to NF = 15.
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2.3.5 Inversion of Minimum Phase sequences

So far we have discuss the problem of inverting elementary dipoles, and

we have observed that minimum phase dipoles accept a casual and stable

inverse.

This is also valid for more complicated signals (i.e., a seismic wavelet). The

columns of the convolution matrix are wavelets of length NW instead of

dipoles of length 2.

Given a minimum phase wavelet, this a signal that can be decomposed

trough factorization in minimum phase dipoles8, we would like to find the

inverse operator. This is, again, the filter that converts the wavelet into a

spike. Given the wavelet wk, k = 1, . . . , NW , the filter fk, k = 1 . . . , NF

needs to be designed to satisfy the following equation:

(w0, w1, . . . wNW−1) ∗ (f0, f1, . . . , fNF−1) ≈ (1, 0, . . . , 0) (2.85)

In matrix form we can write the following expression (assuming NW = 7

and NF = 4)





w0 0 0 0
w1 w0 0 0
w2 w1 w0 0
w3 w2 w1 w0

w4 w3 w2 w1

w5 w4 w3 w2

w6 w5 w4 w3

0 w6 w5 w4

0 0 w6 w5

0 0 0 w6









f0

f1

f2

f3



 ≈





1
0
0
0
0
0
0
0
0
0





. (2.86)

Again, this system is written in matrix form as Cf ≈ d. We will compute

the inverse filter by minimizing the error function (mean squared error) ǫ:

ǫ = ||e||2 = ||Cf − b||2; (2.87)

8In other words, all the zeros of the z transform of the wavelet lie outside the unit
circle.
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The Euclidean norm of the error vector e = Cf −b can be written down as

ǫ = eT e = (Cf − b)T (Cf − b) . (2.88)

The mean squared error is minimized when the following condition if satis-

fied:

dǫ

df
= 0 , (2.89)

Taking derivatives with respect to the filter coefficients and equating them

to zero leads to the following system of normal equations

CT Cf = CT b . (2.90)

It is clear that the inverse filter is solved by inverting the Toeplitz form

R = CT C, but this matrix (which depends on the wavelet) might have a

set of eigenvalues which are close to zero.

If the matrix is ill-conditioned there exists a set of eigenvalues that are

zero or close to zero. This will lead to numerical unstabilties at the time

of inversion. This shortcoming can be avoided by using a regularization

strategy. Instead of minimizing the misfit function ǫ we will minimize the

following penalized objective function

J = ǫ+ µ||f ||2 , (2.91)

The solution is now given by a penalized least squares estimator where

the parameter µ is also called the regularization parameter (also: ridge

regression parameter or pre-whitening parameter). The condition

dJ

df
= 0 , (2.92)

leads to the following solution
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f = (R + µI)−1CTd . (2.93)

It is clear that the parameter µ is a protection against small eigenvalues

which may lead to an unstable filter. It is important to note that in the

objective function J we are trying to accomplished two different wishes. On

one hand we want to minimize the error function ǫ , on the other hand we

try to keep the energy of the filter bounded. When µ→ 0 the error function

will be minimum but the filter may have an undesired oscillatory behavior.

When µ is large the energy of the filter will be small and the misfit function

ǫ will be large. In this case we have a matching filter of the form

f = µ−1CTd . (2.94)

Last equation was obtained by doing the following replacement (R + µI) ≈
µI, which is valid only when µ is large.

In Figure (2.13) we illustrate the effect of the tradeoff parameter in the filter

design and in the actual output of the deconvolution. It is clear that when

µ is small the output sequence is a spike, when we increase µ the output

sequence is a band-limited signal. This concept is very important when

dealing with noisy signals. We will come back latter to this problem when

we analyze the deconvolution of reflectivity sequences.

In Figure (2.14) we portray the so called tradeoff curve. This is a curve

where we display the misfit, ǫ, versus the norm of the filter ||f ||2 for various

values of the tradeoff parameter µ. This curve is also called the Tikkonov

curve or the L-curve, this is a popular method to analyze the tradeoff that

exists between resolution and variance in linear inverse problems.
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Filter, f

µ=1.e−4

µ=1.e6

Output, w⊗ f

Figure 2.13: A minimum phase wavelet inverted using different tradeoff
parameters (µ).
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Figure 2.14: Tradeoff curve for the previous example. The vertical axis
indicated the misfit and the horizontal the norm of the filter.
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2.4 MATLAB codes used in Chapter 2

2.4.1 Inversion of dipoles

This code was used to generate Figures (2.4), (2.5), and (2.6).

% Dipole.m

% This code is used to invert a min. phase dipole

% The inverse is truncated to N samples

N = 5; % Length of the inverse filter

a = 0.1; % coeff. of the dipole

t = 1:1:N; % Time samples

d = [1 a]; % Dipole

f = (-a).^(t-1); % Inverse filter

o = conv(d,f) % Compute the output d*f

% Plot The dipole, the filter and the output

figure(1); stem(d); figure(2); stem(f); figure(3); stem(o);

2.4.2 Amplitude and phase

This code was used to generate Figure (2.8).

% Minmax.m

% A MATLAB code to compute amplitude and phase

% of min and max phase dipoles

a = 0.2;

d_min = [1,a]; % Min phase dipole

d_max = [a,1]; % Max phase dipole

% Compute amplitude and phase using an FFT
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D_min = fft(d_min,256); A_min = abs(D_min); theta_min = angle(D_min);

D_max = fft(d_max,256); A_max = abs(D_max); theta_max = angle(D_max);

% Plot the results

n = 256/2+1;

subplot(221); plot(A_min(1:n));title(’Amplitude of 1+0.2z’)

subplot(222); plot(A_max(1:n));title(’Amplitude of 0.2+z)’)

subplot(223); plot(unwrap(theta_min(1:n))); title(’Phase of 1+0.2z)’)

subplot(224); plot(unwrap(theta_max(1:n))); title(’Phase of 0.2+z’)

2.4.3 Least squares inversion of a dipole

This code was used to generate Figures (2.9) and (2.10).

% LS_dipole.m

% Least squares inversion of a

% min. phase dipole

NF = 5; % length of the filter

a = 0.5;

d = [1,a]’; % Data (the dipole)

ND = max(size(d)) ; % Length of the data

NO = ND+NF-1 % length of the output

b = [1,zeros(1,NO-1)]’; % Desire output

C = convmtx(d,NO-1); % Convolution matrix

R = C’*C; % Toeplitz Matrix

rhs = C’*b; % Right hand side vector

f = inv(R)*rhs; % Filter

o = conv(f,d); % Actual output

figure(1); stem(d); figure(2); stem(f); figure(3); stem(o);
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2.4.4 Eigenvalues of the Toeplitz matrix

This code was used to generate Figures (2.11) and (2.12).

% Eigen_dipole.m

% Condition number versus filter length.

% for a min. phase dipole

for NF = 5:15

a = 0.5;

d = [1,a]’; % Data (the dipole)

ND = max(size(d)) ;

NO = ND+NF-1

C = convmtx(d,NO-1); % Convolution matrix

R = C’*C; % Toeplitz Matrix

Eigen = eig(R); % Eigenvalues of the Toeplitz Matrix

Cond = max(Eigen)/min(Eigen);

subplot(231);plot(NF,Cond,’s’); hold on;

end

2.4.5 Least square inverse filters

Program used to obtain Figure (2.14).

function [f,o] = LS_min(w,NF,mu);

% LS_min.m

% Given an input wavelet w this programs

% computes the wavelet inverse filter

% and the actual output o.

% NF is the filter length.

% Note that w is a column wavelet

% mu is the pre-whitening

NW = max(size(w)); % length of the wavelet

NO = NW+NF-1
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b = [1,zeros(1,NO-1)]’; % Desire output

C = convmtx(w,NF); % Convolution matrix

R = C’*C; % Toeplitz Matrix

rhs = C’*b; % Right hand side vector

I = eye(R)*mu;

f = inv(R+I)*rhs; % Filter

o = conv(f,w); % Actual output

return
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2.5 The autocorrelation function

Consider a time series of the form

X(z) = x0 + x1z + x2z
2

and compute the following function (autocorrelation function)

R(z) = X(z)X∗(z−1) (2.95)

R(z) = x0x
∗
2z

−2+(x0x
∗
1+x1x

∗
2)z

−1+(x0x
∗
0+x1x

∗
1+x2x

2
2)+(x1x

∗
0+x2x

∗
1)z+x2x

∗
0z

2 .

(2.96)

The function R(z) is the Z-transform of a sequence rk that we call the

autocorrelation sequence:

R(z) =
∞∑

k=−∞

rkz
k (2.97)

where

r−2 = x0x
∗
2

r−1 = x0x
∗
1 + x1x

∗
2

r0 = x0x
∗
0 + x1x

∗
1 + x2x

∗
2

r1 = x1x
∗
0 + x2x

∗
1

r2 = x2x
∗
0

rk = 0 otherwise .

(2.98)

It is easy to show that for a time series of length NX

x0, x1, x2, x3, . . . , xNX−1

the autocorrelation coefficient can be computed using the following formulas:
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r−k =
∑NX−1−k

i=0 xix
∗
i+k k = 1, 2, 3, . . . , NX − 1

r0 =
∑NX−1

i=0 xix
∗
i

rk =
∑NX−1−k

i=0 xi+kx
∗
i k = 1, 2, 3, . . . , NX − 1 [Note]9

(2.99)

Properties of the autocorrelation sequence:

1. Hermitian Symmetry: rk = r∗−k k = ±1,±2, . . .

2. r0 > |rk| k = ±1,±2 . . .

3. r0 represents the energy of the signal; for a zero mean stationary

stochastic process r0/NX is an estimator of the variance of the pro-

cess:

σ̂2 =
r0
NX

=

∑NX−1
k=0 |xk|2
NX

.

4. If x0, x1, . . . , xNX−1 is a real time series then, rk = r−k.

2.5.1 The Toeplitz matrix and the autocorrelation coeffi-
cients

In section 2.5.5 we have use the method of least squares to find an inverse

operator that enables us to collapse a wavelet into a spike. We have seen

that the least squares filter is computed by solving a system of equations of

the form

CTCf = Cb (2.100)

Where C is a matrix with entries given by the wavelet properly pad with

zeros and shifted in order to represent a convolution operator, in our example
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C =





w0 0 0 0
w1 w0 0 0
w2 w1 w0 0
w3 w2 w1 w0

w4 w3 w2 w1

w5 w4 w3 w2

w6 w5 w4 w3

0 w6 w5 w4

0 0 w6 w5

0 0 0 w6





(2.101)

This is the convolution matrix for a wavelet or length NW = 7 and a filter

of length NF = 4. It is easy to see that the Toeplitz matrix R = CTC is

given by

R =





r0 r1 r2 r3
r1 r0 r1 r2
r2 r1 r0 r1
r3 r2 r1 r0



 (2.102)

where the elements of R are given by:

rk =
NW−1−k∑

i=0

wi+k wi k = 0, 1, 2, 3, . . . , NF − 1 (2.103)

The coefficients rk are the correlation coefficients the wavelet (compare

this result with equation (2.99)). It is interesting to note that the zero lag

correlation coefficient (k=0) represents the energy of the wavelet:

r0 =
NW−1∑

i=0

w2
i (2.104)

It is important to stress that at the time of computing the Toeplitz matrix

we do not need to compute the product CTC; it is more efficient to compute

the elements of the Toeplitz matrix using formula (2.103).
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The following code can be used to compute the autocorrelation sequence of

a real time series.

function [r0,r] = correlation(x);

%

% Function to compute the autocorrelation sequence

% of a real series

% IN x: time series

% OUT r0: zero lag autocorrelation

% r : vector containing autocorrelation samples

% for lags k=1,2,3...nx-1

%

r0 = sum(x.*x);

nx = length(x);

for k=1:nx-1;

r(k) = 0;

for j = 1:nx-k

r(k) = r(k) + x(j) * x(j+k);

end

end
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2.6 Inversion of non-minimum phase wavelets: op-

timun lag Spiking filters

Minimum phase wavelets are inverted using least-squares. The resulting

filter is often called the Wiener filter or the spiking deconvolution operator.

In general seismic wavelets are not minimum phase (some roots might lie

inside the unit circle, they are mixed phase). An interesting feature of the

the Least-squares approach is that the filter is also minimum phase.

If the wavele is not minimum phase, the actual output (the convolution

of the filter with the wavelet) does not resembles the desire output.i The

problem can be alleviated by defining an optimum lag Wiener filter. This is

an inverse filter where the desired output is the following sequence:

(0, 0, 0, 0 . . . , 1, 0, 0, 0, . . .) (2.105)

The filter design problem is equivalent to what has been already studied in

section (2.3.5). However, now the right side term in equation (2.86) is a

spike that has been delayed by an amount we called L (lag).

The optimum lag Lopt is given by the value L where the actual output

resembles the desired output. It is clear that we need to define some measure

that is capable of measuring how close the actual output is to the desired

output. This is done by defining a filter performance norm

P = 1 − E (2.106)

E =
1

r0
||C f̂ − b||2 (2.107)

where E is the normalized mean square error, r0 is the zero lag autocorre-

lation coefficient. It can be shown that

0 ≥ E ≤ 1

when E = 0 we have a perfect filter (the desired and the actual output

are equal). When E = 1 there is no agreement between the desired and
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the actual output. The filter performance on the other hand is maximized,

P = 1, for an optimum filter. In practical applications we do a search for

the value of L that maximizes the filter performance P , the value L where

P is maximized is usually called the optimum lag.



Chapter 3

Discrete Fourier Transform

In this Chapter will present the transition from the Z transform to the DFT

(Discrete Fourier Transform). The DFT is used to compute the Fourier

transform of discrete data.

3.1 The Z transform and the DFT

We have already defined the Z-transform of a time series as follows:

X(z) =
N−1∑

n=0

xnz
n . (3.1)

The Z-transform provides a representation of our time series in terms of a

polynomial. Let us introduce the following definition:

z = e−iω (3.2)

in this case the z-transform becomes, the DFT:

X(ω) =
N−1∑

n=0

xne
−iωn (3.3)

We have mapped the Z-transform into the unit circle ( z = e−iω is a complex

variable of unit magnitude and phase given by ω). The phase ω is also the

69
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frequency variable in units of radians. It is easy to make an analogy with

the Fourier transform

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt (3.4)

In the last equation the frequency is given in radian/sec when the time is

measured in seconds. In the Fourier transform an analog signal is multiplied

by the Fourier kernel e−iωt and integrated with respect to time. In the DFT

the integration is replaced by summation and the Fourier Kernel by e−iωn.

Since n does not have units, ω has units of radians.

The DFT maps a discrete signal into the frequency domain. So far, the

frequency ω is a continuous variable, but let us assume that one wants to

discretized ω in the same way we have discretized the temporal variable t.

The limits of ω are given by [0, 2π), remember that ω is an angular frequency.

If the time series is a N points time series, we can discretized the frequency

axis as follows:

ωk = k 2π/N , k = 0, 1, . . . , N − 1 (3.5)

Now we can define the DFT as follows:

X(ωk) =
N−1∑

n=0

x(n)e−iωk n , k = 0, 1, . . . , N − 1 . (3.6)

Now the DFT is a transformation of a N points signal into N Fourier co-

efficients Xk = X(ωk). We can also write down our transform in matrix

form





X0

X1

X2
...

XN−1




=





1 1 . . . 1

1 e−i2π/N e−i2π2/N . . . e−i2π(N−1)/N

1 e−i2π2/N e−i2π4/N . . . e−i2π2(N−1)/N

...
...

...
...

...

1 e−i2π(N−1)/N e−i2π2(N−1)/N . . . e−i2π(N−1)(N−1)/N




.





x0

x1

x2
...

xN−1





(3.7)
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The last equation can be written in compact form as follows:

X = F .x (3.8)

It is clear that the DFT can be interpreted as a matrix that maps an M -

dimensional vector into anotherM -dimensional vector. The remaining prob-

lem entails the invertivility of the DFT. We need a transform to come back

from the frequency domain to the time domain, in other words we need F−1.

3.1.1 Inverse DFT

We propose the following inverse

xn =
N−1∑

l=0

αle
i2πln/N . (3.9)

where the coefficients α must be determined. This formula is analogous to

the one use to invert the Fourier transform, however it is important to note

that because the discrete nature of the problem we have interchanged the

integration symbol by a summation. The parameters αk are our unknowns.

In order to find our unknowns we proceed as follows, first we replace the

last equation into equation (3.6),

Xk =
N−1∑

n=0

N−1∑

l=0

αle
i2πn(l−k)/N . (3.10)

The last equation can be rewritten as

Xk =
N−1∑

l=0

αl

N−1∑

n=0

ei2πn(l−k)/N =
N−1∑

l=0

αlsl−k , (3.11)

where the sequence sl−k is given by

sl−k =
N−1∑

n=0

ei2πn(l−k)/N . (3.12)
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At this point we realize the the last equation is a geometric series1 with a

sum given by

N−1∑

n=0

un =

{
N if u = 1
uN

1−u if u 6= 1
(3.13)

In equation (3.12) we can identify u = ei2πn(l−k)/N , therefore

sl−k =

{
N if l = k
0 if l 6= k

, (3.14)

after introducing the final result into equation (3.11) we obtain the following

expression for our unknown coefficients αk

Xk = Nαk, k = 0, . . . , N − 1 . (3.15)

our inversion formula becomes:

xn =
1

N

N−1∑

l=0

Xle
i2πln/N . (3.16)

This equation can also be written as follows:

x =
1

N
FHX . (3.17)

The matrix FH is the Hermitian transpose of the matrix F. It is clear that

the N ×N matrix F is an orthogonal matrix,

FH F = N IN , (3.18)

where IN is an N×N identity matrix. Finally we have a pair of transforms,

the DFT and the IDFT (inverse DFT) , given by

1We have used a geometric series to find the inverse of a dipole in Chapter 2
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Xk =
N−1∑

n=0

xne
−i2πkn/N , k = 0, . . . , N − 1 , (3.19)

xn =
1

N

N−1∑

k=0

Xke
i2πkn/N n = 0, . . . , N − 1 . (3.20)

The DFT is used to map a discrete signal into the frequency domain, the

IDFT is used to map a signal in the frequency domain into time domain.

Because, the DFT is an orthogonal transformation, the inverse is computed

using the Hermitian operator .

The cost of inverting an N × N matrix is proportional to N3, the cost of

multiplying a matrix by a vector is proportional to N2. We will further

diminish the computation cost of multiplying a matrix times a vector by

using the FFT (Fast Fourier Transform).

3.1.2 Zero padding

The DFT allows us to transform an N -points time series into N frequency

coefficients Xk, where the index k is associated to the discrete frequency ωk,

ωk =
2πk

N
= ∆ωk , k = 0, 1, . . . , N − 1

the frequency axis is sampled every ∆ω radians. At this point it appears

that ∆ω is controlled by the number of samples of the time series N . Zero

padding can be used to decrease the frequency interval ∆ω, in this case we

define a new time series that consists of the original time series followed by

M −N zeros,

x = [x0, x1, x2, . . . , xN−1 0, 0, . . . , 0︸ ︷︷ ︸
M−N

]

The new time series is an M -points time series with a DFT given by

Xk =
N−1∑

n=0

xne
−i2πnk/M =

M−1∑

n=0

xne
−i2πnk/M , k = 0, . . . ,M − 1 (3.21)
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Figure 3.1: A time series and the real and imaginary parts of the DFT. Note
that freq. axis is given in radians (0, 2π)

The sampling interval of the frequency axis is now

∆ω =
2π

M
<

2π

N
.

In general, the trick of zero padding is used to oversample the frequency

axis at the time of plotting the DFT. It is also important to pad with zeros

at the time of performing discrete convolution using the DFT.

In Figures (3.1) and (3.2) we portray the effect of padding a time series. In

Figure (3.1) we have the original time series and the associated DFT (the

real and imaginary part). In Figure (3.2) the original time series after zero

padding (20 zeros) is used to compute the DFT.

In the following example I show how to pad with zeros a time series. This

codes was utilized to generate Figures (3.1) and (3.2).
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Figure 3.2: A time series and the real and imaginary parts of the DFT.
In this case the time series was padded with zeros in order to decrease the
frequency interval ∆ω.

% Zero padding - Example

%

N = 30; % Length of the TS

L = 20; % Number of zeros to pad

n = 1:1:N; % Prepare a TS.

x = sin(2.*pi*(n-1)*0.1);

x = x./n;

if L>=1; x = [x, zeros(1,L)]; % Pad with zeros if L>0

N = length(x);

n = 1:1:N;

end;



76 CHAPTER 3. DISCRETE FOURIER TRANSFORM

X = fft(x); % Compute the DFT

w = 2*pi*n/N; % Compute the freq. axis in rads.

subplot(311); % Plot results

plot(n,x); xlabel(’n’); ylabel(’x’);

subplot(312);

stem(w,real(X)); xlabel(’\omega [rad]’);ylabel(’Real[X_k]’)

subplot(313);

stem(w,imag(X)); xlabel(’\omega [rad]’);ylabel(’Imag[X_k]’)

3.1.3 The Fast Fourier Transform (FFT)

The FFT is not a new transform; the FFT is just a fast algorithm to compute

DFTs. The FFT is based on the halving trick, that is a trick to compute

the DFT of length N time series using the DFT of two sub-series of length

N/2. Let’s start assuming that we a have a time series of length 2N :

z0, z1, z2, z3, . . . , z2N−1 .

First, we will assume that one wants to compute the DFT of the time series

z. Using the definition

Zk =
2N−1∑

n=0

zn e
−i2πnk/(2N), k = 0 : 2N − 1 , (3.22)

we can rewrite the last equation in terms of two time series composed of even

samples x = z0, z2, z4 . . . and odd samples y = z1, z3, z5 . . ., respectively.

Zk =
N−1∑

n=0

z2n e
−i2π2nk/(2N) +

N−1∑

n=0

z2n+1 e
−i2π(2n+1)k/(2N) . (3.23)

It is clear that the RHS term can be written in terms of the DFTs of x (even

samples) and y (odd samples)

Zk = Xk + e−i2πk/(2N) YK , k = 0 : N − 1 . (3.24)

The last equation provides a formula to compute the first N samples of the

DFT of z based on the N samples of the DFT of x and z. Now, note that
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we need another formula to retrieve the second half of the samples of the

DFT of z,

Zk =
2N−1∑

n=0

zn e
−i2πnk/(2N) , k = N, . . . , 2N − 1 . (3.25)

In the last equation we apply the following substitution: j = k −N

Zj+N =
2N−1∑

n=0

zn e
−i2πn(j+N)/(2N) , k = N, . . . , 2N − 1 . (3.26)

After rewriting the last expression in terms of x and y we end up with the

following formula:

Zj+N = Xj − e−i2πk/(2N) Yj , j = 0, N − 1 . (3.27)

Now we have two expression to compute the DFT of a series of length 2N

as a function of two time series of length N . Good FFT algorithms repeat

this trick until the final time series are series of length 1. The recursions

given in (3.24) and (3.27) are applied to recover the DFT of the original

time series. It can be proved that the total number of operations of the

FFT is proportional to N ln2(N) (for a time series of length N). This is

an important saving with respect to the standard DFT which involves a

number of operations proportional to N2.

A small modification to formulas (3.24) and (3.27) will permit us to compute

the inverse DFT.

3.1.4 Working with the DFT/FFT

Symmetries

Let us start with a the DFT of a real time series of length N

Xk =
N−1∑

n=0

xne
−i2πnk/N , k = 0, . . . , N − 1 (3.28)

the frequency in radians is given by

ωk = 2πk/N , k = 0, 1, . . . , N − 1 .
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Using the following property

ei2π(N−k)n/N = e−i2πkn/N (3.29)

we can re-write equation (3.28) as follows:

XN−k =
N−1∑

n=0

xne
−i2πn(N−k)/N =

N−1∑

n=0

xne
i2πn(N+k)/N = X∗

k . (3.30)

The following example is used to illustrate the last point. The time series is

x = [2, 3, 1, 3, 4, 5,−1, 2] The DFT is given by

Sample k X_k N-k (N=8)

0 19.0000 8

1 -4.1213 - 1.2929i 7

2 6.0000 - 3.0000i 6

3 0.1213 + 2.7071i 5

4 -7.0000 4

5 0.1213 - 2.7071i 3

6 6.0000 + 3.0000i 2

7 -4.1213 + 1.2929i 1

It is claear that the firstN/2+1 samples are required to define the remaining

samples of the DFT.

The frequency axis

In the previous example I compute the DFT, Xk in terms of samples k. We

have already mentioned that k is related to angular frequency as follows:

ωk = 2πk/N . Let us define the sampling interval in frequency as ∆ω =

2π/N , therefore, ωk = ∆ω k, k = 0, . . . , N − 1. In the previous example we

have

k omega_k X_k

0 0 19.0000



3.1. THE Z TRANSFORM AND THE DFT 79

ω3

ω5

ω6
ω7

ω4=π

ω2
ω1

ω0
ω0 ω1 ω2 ω3 ω4=π ω5 ω6 ω7

ω0 ω1 ω2 ω3 ω4=π

1 2 3 4 5 6 7 8

2π−ω6

1 2 3 4 5678
2-

1-

2π−ω5 
2π−ω7

Figure 3.3: Distribution of frequencies around the unit circle. The DFT can
be plotted as in the [0, 2π) interval or in the (−π, π] interval.

1 0.7854 -4.1213 - 1.2929i

2 1.5708 6.0000 - 3.0000i

3 2.3562 0.1213 + 2.7071i

4 3.1416 -7.0000

5 3.9270 0.1213 - 2.7071i

6 4.7124 6.0000 + 3.0000i

7 5.4978 -4.1213 + 1.2929i

Note that the central frequency is ω4 = π, the last frequency is almost 2π

or ω7 = 2π − ∆ω. This is because we have discretized the unit circle in the

interval [0, 2π).

In does not make much sense to talk about frequencies above π radians.

If fact the ω = π is the Nyquist frequency in rads. What is the meaning

of frequencies above ω > π?. Well this simple reflect the way we have

discretized the unit circle when computing the DFT.
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3.2 The 2D DFT

The 2D Fourier transform is defined as follows:

F (ω1, ω2) =

∫ ∫
f(x1, x2)e

−i(ω1 x1+ω2 x2)dx1 dx2 , (3.31)

similarly, we can define the inversion formula

f(x1, x2) =

∫ ∫
F (ω1, ω2)e

i(ω1 x1+ω2 x2)dω1 dω2 . (3.32)

Whereas the 1D FT is used to decomposed signals in a decomposition of sin

and cos, one can image the 2D FT as a decomposition of a signal in terms

of plane waves.

It is important to stress that for our signal processing applications we will

be dealing with the 2D DFT (this is the discrete version of the FT).

Let us first consider a 2D discrete signal (i.e., a map)

xm,n, n = 0, . . . , N − 1, m = 0, . . . ,M − 1 .

The formulas for the forward and inverse DFT in the 2D case are given by

Xk,l =
M−1∑

m=0

N−1∑

n=0

xm,ne
−i2πkm/Me−i2πln/N , k = 0, . . . ,M, l = 0, . . . , N .

(3.33)

xk,l =
1

N M

M−1∑

m=0

N−1∑

n=0

Xm,ne
i2πkm/Mei2πln/N , k = 0, . . . ,M, l = 0, . . . , N .

(3.34)

The 2D DFT is computed by calling two times the 1D DFT. This is very

simple: you first compute the DFT of all the columns of xn,m, then you

compute the DFT to rows of the previous result. In fact, 2D DFT codes

are just 1D FFT’s codes working on rows and columns. The 2D DFT is

important at the time of filtering 2D images (i.e., gravity maps, seismic

records). Notice that in the 2D DFT we need to consider 2D symmetries.
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3.3 On the Design of Finite Impulse Response fil-

ters

So far we have studied operators (filters) that are capable of collapsing a

wavelet into a spike. These filters are often called spiking filters or Wiener

filters. In this section we will examine the problem of designing FIR (Fi-

nite Impulse Response) filters. These are filters that are used to eliminate

undesired spectral components from our data.

3.3.1 Low Pass FIR filters

In this case we want to design a filter that operates in the time domain with

a amplitude spectrum with the following characteristics:

B(ω) =

{
1 −ωc ≤ ω ≤ ωc

0 otherwise
(3.35)

We will assume that the filter phase is zero. In the previous expression ωc

is the cut-off frequency. This filter can be either applied in the frequency

domain or in the time domain. It is clear that if the signal to be filtered is

called X(ω), then the filtered signal is given by

Y (ω) = X(ω) . F (ω) (3.36)

In general, it is more convenient to design short filters in the time domain

and applied them via convolution2

y(t) = x(t) ∗, b(t) (3.37)

where the sequence bk is the Impulse Response of the filter with desired

amplitude response B(ω). We can use the inverse Fourier transform to find

an expression for b(t),

2note that we are working with continuous signals.
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b(t) =
1

2π

∫ ωc

−ωc

B(ω)eiωt dω (3.38)

Evaluating the last integral leads to the following expression for the filter

f(t):

b(t) =
ωc

π

sin(ωc t)

ωc t
=
ωc

π
sinc(ωc t) , ∞ < t <∞ . (3.39)

This is the impulse response of the continues system with amplitude response

B(ω). We need to discretized the previous expression to obtain the impulse

response of a discrete system:

bn = ∆t b(t)|t=n ∆t (3.40)

the factor ∆t comes from equation (1.44); this is a scaling factor that allows

us to say that the Fourier transform of the discrete and continuous signals

are equal in [−π/∆t, π/∆t].
The final expression of the digital filter is given by

bn = ∆t
ωc

π
sinc(ωc n∆t), n = . . . ,−3,−2,−1, 0, 1, 2, 3 . . . . (3.41)

It is clear that this is a IIR filter (infinite impulse response filter). A FIR

filter is obtained by truncating the IIR filter:

bn = ∆t
ωc

π
sinc(ωc nδt), n = −L . . . ,−3,−2,−1, 0, 1, 2, 3 . . . L . (3.42)

In this case we have a filter of length 2L+1. When the filter is truncated the

actual amplitude spectrum of the filter is not equal to the desired or ideal

amplitude spectrum (3.35). This point has already been studied in section

(1.2.3) where we examined the spectral artifacts that are introduced when a

signal is truncated in time. In Figure (3.4) we display the impulse response

of a filter of cut-off frequency fc = 50Hz for filter lengths (2L+ 1) 21, and
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41. We also display the associated amplitude response. It is easy to see

that the filter truncation has introduced the so called Gibbs phenomenon

(Oscillations).

One way to minimize truncation artifacts is by smoothing the truncated

impulse response with a taper or window.

bwn = bn.wn

now bwn is the truncated impulse response after applying a taper function.

The taper is used to minimize truncation effects at the end point of the

impulse response; a popular taper is the Hamming Window:

wn = 0.54 − 0.45 cos(2π(n − 1)/(N − 1)) , n = 1 : N

In figure (3.5) we analyze the effect of tapering the impulse response of

the filter before computing the amplitude response. It is clear that the

oscillations around the transition band have been eliminated. It is important

to stress that tapering will also increase the width of the transition band;

therefore filters that are too short might not quite reflect the characteristics

of the desired amplitude response.
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Figure 3.4: Impulse response of two finite length filters and the associated
amplitude response. The filter were obtained by truncating the ideal infinite
length impulse response sequence.
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Figure 3.5: Impulse response of two finite length filters and the associated
amplitude response. The filter were obtained by truncating the ideal infi-
nite length impulse response sequence. In this case the truncated impulse
response was taper with a Hamming window. Tapering helps to attenuate
side-lobe artifacts (Gibbs phenomenon)
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Figure 3.6: A Hamming taper (window) of length 2L+ 1.
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3.3.2 High Pass filters

Knowing how to compute low pass filters allows us to compute high pass

filters. If the amplitude response of a low pass filter if given by BL(ω) we

can contrstruct a high pass filter with the same cut-off frequency using the

following expression:

BH(ω) = 1 −BL(ω) (3.43)

that suggests that one can compute the impulse response of the low pass filter

an then transform it into a high pass filter using the following expression:

bHk = −bLk k 6= 0
bHk = 1 − bLk k = 0

(3.44)
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Chapter 4

Deconvolution of reflectivity
series

4.1 Modeling normal incidence seismograms

In this chapter we will study the problem of computing reflection and trans-

mition coefficients for a layered media when plane waves propagate in the

earth with angle of incidence i = 0 (Normal incidence). We will use these

concepts to derive a model for normal incidence seismograms.

4.1.1 Normal incidence

Consider a plane wave impinging at angle of propagation i = 0 with respect

to the normal (see Figure (4.1) ). In this case we have three waves:

• Incident wave: ↓ in medium 1

• Reflected wave: ↑ in medium 1

• Transmitted wave: ↓ in medium 2

Let us assume that the amount of incident wave is equal to 1, the amount of

reflected wave is given by r, and the amount of transmitted wave is denoted

by t. At the boundary the following condition should be satisfied (continuity

of displacements)

1 + r = t

89
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This equation has two unknowns, to compute the r and t we need an extra

equation. We well consider conservation of energy. In the acoustic (vertical

incidence case) conservation of energy leads to the following equation:

I1 × 1 + I1 × r2 = I2 × t2 .

The quantities I1 and I2 are called acoustic impedances

I1 = ρ1 v1

I2 = ρ2 v2

where ρ1 and ρ2 are the densities of the material above and below the in-

terface and v1 and v2 the P-velocities, respectively. After combining the

equations of continuity of displacement and conservation of energy we obain

the following expressions

r =
I2 − I1
I2 + I1

Reflection coefficient (4.1)

t =
2I1

I2 + I1
Transmition coefficienct (4.2)

The above analysis is valid for an incident plane wave propagating down-

wards. Let’s consider the case of an incident wave propagating upwards

(Figure (4.2) ).

• Incident wave: ↑ in medium 2

• Reflected wave: ↓ in medium 2

• Transmitted wave: ↑ in medium 1

In this case the reflection and transmition coefficients are given by

r′ =
I1 − I2
I2 + I1

(4.3)

t′ =
2I2

I2 + I1
(4.4)

From the above equations it is clear that
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I1

I2

1 r

t

r: reflection coefficient

1+r=t

t: transmition coefficient

Figure 4.1: P-wave normal incidence. The incident wave is propagating
downwards.

r′ = −r (4.5)

4.1.2 Impulse response

Let’s assume that we run a zero offset experiment in a stratified earth com-

posed of 4 layers plus a half-space of impedances given by I1, I2, I3, I4, I5.

(Figure (4.3) ). At t = 0 a delta-like source emits energy into Earth. The

energy is transmitted and reflected from the layers. If we do not consider
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I1

I2

1 r’

t’

r’: reflection coefficient
t’: transmition coefficient

1+r’=t’       r = -r’

Figure 4.2: P-wave normal incidence. The incident wave is propagating
upwards.

multiples reflection, our sismogram will be composed of 4 arrivlas (4 reflec-

tions).

To simplify the problem I will show how to compute the amplitude of the

wave recorded at the surface of the earth generated (reflected) at the inter-

face 4. First we have to compute the amount of amplitude transmitted to

each one of the layers until reaching layer 4. This is given by the product

of the transmition coefficients of each layer. In Figure (4.3) the transmition

coefficients t are replaces by their equivalent expression (1 + r).
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The amplitude of the wave when reaches the layer 4 is

1 × t1 × t2 × t3 = (1 + r1)(1 + r2)(1 + r3)

when the wave is reflected in the layer 4 the total amplitude at that point

(last expression) needs to be multiplied by the reflection coefficient of inter-

face 4,

1 × t1 × t2 × t3 × r4 = (1 + r1)(1 + r2)(1 + r3)t4

Note that now the wave (reflected wave) is propagating upwards, therefore,

the transmition coefficients are given by terms of the form

1 + r′ = 1 − r

The final amplitude after propagating the wave to the surface of the Earth

(this is what the receiver is measuring!) is given by

(1 + r1)(1 + r2)(1 + r3)︸ ︷︷ ︸
Transmition ↓

× r4︸︷︷︸
Reflection

× (1 − r1)(1 − r2)(1 − r3)︸ ︷︷ ︸
Transmition ↑

The final expression for the amplitude of the wave reflected in the interface

4 can be written down as follows

(1 − r21)(1 − r22)(1 − r23)r4 .

It is clear that reflections occur at all the layers:

Amplitude of the reflection generated at intergace 1

A1 = r1

Amplitude of the reflection generated at intergace 2

A2 = (1 − r21)r2

Amplitude of the reflection generated at intergace 3

A3 = (1 − r21)(1 − r22)r3
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z3

z4

z2

z1

z=0

(1+r1)(1+r2)(1+r3)

(1+r1)(1+r2)

1+r1

1 (1+r1)(1+r2)(1+r3)r4(1-r3)(1-r2)(1-r1)

(1+r1)(1+r2)(1+r3)r4(1-r3)(1-r2)

(1+r1)(1+r2)(1+r3)r4(1-r3)

(1+r1)(1+r2)(1+r3) r4

I1

I3

I4

I2

Reflection at interface 4

I5
Interface 4

Interface 1

1+ri = Transmition coef. 

1-ri = Transmition coef.

Ii = Acoustic impedance of the layer i

Figure 4.3: Amplitude of a wave plane wave propagating in a layered
medium. Analysis of the wave reflected in the interface 4.

Amplitude of the reflection generated at intergace 4

A4 = (1 − r21)(1 − r22)(1 − r23)r4

We can write a general expression for the amplitude of a reflection generated
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at the k-th interface:

A1 = r1

Ak =
k−1∏

i=1

(1 − r2i ) rk k = 2, 3, 4, . . .

How to interpret these results?. If we assume that the earth is excited with

a delta function, and neglecting the presence of multiples, our zero-offset

seismogram will be a collection of delta functions (spikes) at arrival times

given by the two-way travel time formula. The strength of each arrival will

be proportional to the amplitude Ak

However, in real exploration seismology, it is impossible to have a source

that resembles a delta function. The source signature is called a wavelet.

This is a finite length time function that we will denote as w(t). In this

case, the seismogram is represented by a superposition of wavelets arriving

at different times and with amplitude proportional to Ak.

In our model with 4 interfaces (Figure (4.3) ) we will have 4 arrivals of

amplitude A1, A2, A3 and A4. The seismogram can be expressed as follows

s(t) = A1 w(t− t1) +A2w(t− t2) +A3 w(t− t3) +A4 w(t− t4) (4.6)

where t1, t2, t3 and t4 are the arrival times of each reflection 1

Notice that if we neglect transmission effects, the amplitude Ai can be re-

placed by the reflection coefficient ri. In general we will assume an Earth

model that conists of microlayers In this case we can write the seismic trace

model a convolution between two time series: a wavelet and the reflectivity

sequence

sn = wn ∗ qn . (4.7)

1Notice that w(t − τ ) is w(t) after being delayed τ seconds.
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4.2 Deconvolution of reflectivity series

So far we have discuss the problem of designing a deconvolution operator for

a seismic wavelet. We have also examined a “toy” example, the minimum

phase dipole (Chapter 2).

In general, the convolutional model is a very well accepted model to describe

a seismic trace. In this model we say that the seismic trace (in general a

zero-offset trace) can be written down as a convolution of two signals: a

seismic wavelet (this is the source function) and the reflectivity series.

The reflectivity series is our “geological” unknown. In fact, the reflectivity is

a sequence of spikes (reflectors) that indicates the position (in time) of layers

in the subsurface, the strength or amplitude of each spike is an indicator

of how much energy is reflected back to the receivers during the seismic

experiment. Let’s write the seismogram as a simple convolution between a

wavelet wn and a reflectivity sequence qn:

sn = wn ∗ qn . (4.8)

In this simple model we have neglected the noise, in general we will assume

that deterministic noise (multiples and ground roll) has been attenuated and

therefore what is left is random noise

sn = wn ∗ qn + nn (4.9)

It is clear from the above equation that one has a problem with one equa-

tion (one observable) and two unknowns (the wavelet and the reflectivity).

Therefore, the seismic deconvolution problem involves the solution of two

subproblems:

• Wavelet Estimation

• Operator design

By wavelet estimation we refer to methods to estimate the seismic source

from the seismic trace. In general these methods are statistical techniques
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that explode some properties of the remaining unknown (the reflectivity).

We do have deterministic techniques based on the wave equation to estimate

the seismic source in the marine case. These methods are beyond the scope

of this course.

4.2.1 The autocorrelation sequence and the white reflectiv-
ity assumption

We have seen that the design of a Wiener filter involves the inversion of

an autocorrelation matrix with Toeplitz structure. This matrix arises from

the fact that we have represented our convolution model as a matrix times

vector multiplication. To clarify the problem, let us assume that we have a

3 point wavelet and we compute the autocorrelation matrix. We first write

down the convolution matrix2:

C =





w0 0
w1 w0

w2 w1

0 w2



 . (4.10)

The autocorrelation matrix is given by

R = CTC =

(
r0 r1
r1 r0

)

. (4.11)

Now we can try to write the autocorrelation coefficients in terms of the

sample of the wavelet wn, in this case we have:

rw
0 = w2

0 + w2
1 +w2

2 (4.12)

rw
1 = w0w1 + w1w2 (4.13)

2This is the matrix you would have used to design a 2 points spiking or Wiener filter
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The first coefficient is the zero-lag correlation coefficient, this is also a mea-

sure of the energy of the wavelet. The second coefficient 3 rw
1 is the first lag

of the correlation sequence.

The correlation coefficients can be written using the following expression:

rw
j =

∑

k

wkwk+j , j = 0,±1,±2 . . . . (4.14)

In the Wiener filter the matrix R is an N × N matrix where N is the

length of the filter, in this case we will need to compute N autocorrelation

coefficients:

rw
j , j = 0, N − 1 .

In order to design a Wiener or spiking filter, we first need to know the

wavelet. Unfortunately, the seismic wavelet is unknown. To solve this prob-

lem we use the white reflectivity assumption. Under this assumption the

seismic reflectivity (the “geology”) is considered a zero mean white process

(Robinson and Treitel, 1980).

A zero-mean white process is an uncorrelated process, in other words if rq
j

is the autocorrelation function of the reflectivity, then

rq
j =

{
Pq j = 0
0 j = ±1,±2,±3, . . .

. (4.15)

The autocorrelation is a measure of similarity of a time series with itself. The

zero lag coefficient measure the power of the signal (Pq), the first coefficient

(j = 1) measures the similarity of the signal with a one-sample shifted

version of itself.

If the reflectivity is a zero-mean white noise process, the following remarkable

property is true:

rs
j = Pq r

w
j . (4.16)

3Please, note that the supra-script w is used to stress that this is the autocorrelation
of the wavelet
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In other words: the autocorrelation function of the trace is an estimate

(within a scale factor) of the autocorrelation of the wavelet. It is clear that

now we can estimate the autocorrelation of the wavelet from the autocorre-

lation of our observable: the seismic trace.

We have managed to compute the autocorrelation function of the wavelet,

but what about the wavelet. It turns out that the Z-transform of the au-

tocorrelation sequence of the wavelet can be used to compute the seismic

wavelet. In this case we need to make a new assumption, we will assume

that the wavelet is a minimum phase wavelet. In general, this is a good

assumption to deal with sources generated by explosions (dynamite).

It is esay to show that the z transform of the autocorrelation sequence can

be decomposed as follows:

Rw(z) =
∑

j

rw
j z

j = W (z)W (z−1) (4.17)

(this is for a real wavelet). In this case, the autocorrelation function provides

information about the wavelet but cannot define the phase of the wavelet.

After factorizing the above equation, one can select the zeros that lie outside

the unit circle (the minimum phase dipoles!!). In this way we can recover a

wavelet with minimum phase features consistent with a spectrum given by

Rw(z).

The estimation of a minimum phase wavelet from the autocorrelation func-

tion is ofter refered as the spectral factorization problem. It can be solved

using different techniques, in particilar the Hilbert Transform provides a fast

algoritihm to compute the minimum phase wavelet.

4.2.2 What to do with the noise?

We start with our noisy seismogram:

sn = wn ∗ qn + nn (4.18)

The goal of the deconvolution process is to recover qn from the data, sn.

In order to achieve this objective, a filter fk must be computed such that
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fk ∗ wk = δk. Generally, of course, we can only compute an estimate of the

filter f̂k and f̂k ∗ wk = ak, where ak is called the averaging function and

resembles a delta function only in the ideal case. Applying f̂k to both sides

of equation (4.18), yields the estimated output of the deconvolution process

q̂k = ak ∗ qk + f̂k ∗ nk

= qk + (ak − δk) ∗ qk + f̂k ∗ nk .
(4.19)

Since our main requirement is to estimate a reliable model q̂t which is close

to the true reflectivity, it is important to design a filter such that the error

terms in equation (4.19) are as small as possible. Or in other words, one

seeks a solution with the following properties:

ak = wk ∗ fk ≈ δk , (4.20)

and

fk ∗ nk ≈ 0 (4.21)

The last two expression can also be written in matrix form

Cwf ≈ d (4.22)

and

Cnf ≈ 0 (4.23)

where Cw and Cn denote the convolution matrices for the wavelet and the

noise, respectively. Both equations are honored when we minimize the fol-

lowing objective function:

J = ||Cwf − d||2 + β||Cnf ||2 , (4.24)
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where β is a tradeoff parameter. The second term in the last equation can

be written as

||Cnf ||2 = fTCT
nCnf , (4.25)

where the matrix CT
nCn is the noise autocorrelation matrix. If the noise is

uncorrelated, we can replace CT
nCn by its estimator

E[CT
nCn] = σ2

nI . (4.26)

where σ2
n is an estimate of the variance of the noise. Now the objective

function J is given by,

J = ||Cwf − d||2 + µ||f ||2 , (4.27)

where µ = σ2
n × β. This is the objective function used to design an inverse

filter, and the solution given by

f = (Rw + µI)−1CT
wd . (4.28)

In Figures (4.4), (4.5) and (4.6) we test the performance of the least squares

inversion when dealing with noise free and noisy data. It is clear, that the

pre-whitening parameter plays a key role in the deconvolution of noisy data.
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Reflectivity, q

seismogram (No noise)

Deconvolved reflectivity µ=0.001

Figure 4.4: Deconvolution of a ”clean” seismogram.
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Reflectivity, q

Noisy seismogram 

Deconvolved reflectivity µ=0.001

Figure 4.5: Deconvolution of a ”noisy” seismogram. The tradeoff parameter
is too small; the result is too unstable.
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Reflectivity, q

Noisy seismogram 

Deconvolved reflectivity µ=0.05

Figure 4.6: Deconvolution of a ”noisy” seismogram. The tradeoff has been
increased to stabilize the solution
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4.2.3 Deconvolution in the frequency domain

A procedure similar to the one outlined in the previous section can be used

to deconvolved data in the frequency domain. Taking the discrete Fourier

Transform of equation (4.19) yields

Q̂k = Qk + (Ak − 1)Qk + F̂kNk. (4.29)

Since ak should be a good approximation to a delta function, it turns out

that the filter should be designed satisfying the following requirement

WKFk = Ak ≈ 1 ∀k. (4.30)

Furthermore, in order to maintain the noise at a small level

Fk Nk ≈ 0 ∀k. (4.31)

We can combine these two requirements into a single one. In order to achieve

this, let us construct the following objective or cost function

J =
∑

k

|Ak − 1|2 + α
∑

k

|FkNk|2. (4.32)

Minimizing the objective function with respect to the filter coefficients leads

to

F̂k =
W ∗

k

|Wk|2 + α|Nk|2
. (4.33)

Finally, the reflectivity estimate is given by

Q̂k = Dk
W ∗

k
|Wk|2+α|Nk|2

= Dk
W ∗

k
|Wk|2+µ .

(4.34)
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Since the noise has a flat spectrum (|Nk|2 = σ2
n) we can replace α|Nk|2 by

another constant µ. An estimate of the variance of the reflectivity estimate

in the frequency domain is given by

V ar(Q̂k) = |F̂k|2σN
2. (4.35)

after a few manipulation we end up with

V ar(Q̂k) =
|Wk|2σN

2

(|Wk|2 + µ)2
. (4.36)

When µ = 0 the variance can be extremely high at the frequencies at which

the wavelet power is small. Similarly we can find a expression for the norm

of the reflectivity estimate in the frequency domain

N =
∑

k |Q̂k|2
= 1

σN
2

∑
k |Sk|2V ar(Q̂k)

(4.37)

The misfit function is

Φ =
∑

k |Sk −WkQ̂k|2
= 1

σN
2

∑
k |Sk|2( µ

|Wk|2+µ)2
(4.38)

Regularization error and noise magnification

If Ek denotes the deviation of the filter from the true inverse filter, defined

by

Ek = 1 − F̂kWk (4.39)

we can write equation (4.12) as follows

Q̂k = F̂kWkQk + F̂kNk

= (1 − Ek)Qk + 1−Ek
Wk

Nk
(4.40)
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then, the difference between the true reflectivity Qk and the reflectivity

estimate Q̂k is given by

Q̂k −Qk = −EkQk︸ ︷︷ ︸
RE

+
1 −Ek

Wk
Nk

︸ ︷︷ ︸
NAE

(4.41)

where RE stands for regularization error and NAE for noise amplification

error. The NAE is independent of the data and can be expressed as a

function of the wavelet:

W ∗
k

|Wk|2 + µ

It is clear that the more the filter resembles the i nverse the wavelet W−1
k ,

the larger this error will be. The RE introduce data-dependent degradation

(i.e., ringing).
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4.3 Sparse deconvolution and Bayesian analysis

The deconvolution operator is usually stabilized by adding a small pertur-

bation to the diagonal of the autocorrelation matrix (Robinson and Treitel,

1980). The latter is equivalent to solving the problem by means of zero order

quadratic regularization.

The regularization technique is used to estimate a unique and stable so-

lution by introducing some type of prior information. In this part of the

course, I will examine different regularization strategies that may be used

to improve the deconvolution of seismic records. Specifically, I will use the

Huber and the Cauchy criteria to retrieve a sparse reflectivity sequence.

These criteria are related to ”long tail” probability distributions (Huber,

1981) which, in a Bayesian context, are used as a prior distribution for the

reflectivity sequence. The seismic wavelet is assumed to be known or to be

well approximated by an estimator.

Re-weighting strategies have been used in conjunction with least squares

type estimators to diminish the influence of outliers in inverse problems

(Scales et al., 1988). In robust statistics the influence function (Huber,

1981) that measures the influence of the residuals on the estimators is con-

structed so as to attenuate outliers. A similar manipulation can be applied

to the regularization function. In this case the goal is to attenuate the side-

lobe artifacts which are introduced in the deconvolution process. In this

context, the regularization strategy is used to drive the output of the de-

convolution to a prescribed part of the model space, quite to the contrary

to the classical application in robust statistics where the chief goal is to

attenuate the influence of gross errors. When the problem is properly regu-

larized the resolution of close seismic arrivals can be significantly enhanced.

The described procedure is used to overcome the poor resolution associated

to quadratic regularization strategies. We have to realize, however, that

only when the seismogram is composed of a finite superposition of seismic

wavelets (sparse reflectivity assumption) that these techniques may provide

a substantial improvement with respect to conventional deconvolution.
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4.3.1 Norms for sparse deconvolution

The deconvolution problem may be stated as follows. Consider

sk =
∑

j

wjqk−j, k = 1, ny (4.42)

where qk, k = 1, nq and sk, k = 1, ns are the input and the output series

to the convolution process, respectively. The series wk, k = 1, nw is the

“blurring function” or source wavelet. In time domain deconvolution, the

goal is to find x̂k such that the residuals ǫk are minimized

ǫk = sk −
∑

j

wj q̂k−j, k = 1, ns . (4.43)

In the least squares approach the following objective function of the residuals

is minimized:

J =
∑

k

ρ1(
ǫk
σk

) , (4.44)

where

ρ1(u) =
1

2
u2 . (4.45)

The residuals are weighted according to the data accuracy that is given by

the inverse of the standard error of each observation σk. For simplicity we

shall assume that σk = σn, k = 1, ns. The minimization of J is accomplished

by solving the following system:

∂J

∂ql
=
∑

k

ψ(
ǫ

σn
)wk−l = 0 , l = 1, nq (4.46)

where ψ(u) = dρ(u)
du . In robust statistics the function ψ is called the influ-

ence function. This function measures the influence of the residuals on the
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parameter estimators. The minimization of J leads to the following system

of normal equations

∑

k

∑

j

wk−jwk−lqj =
∑

k

wk−lsk , (4.47)

or in matrix form

Rq = g . (4.48)

Equation (4.48) is stabilized by adding a small perturbation to the diagonal

of the matrix R. This is equivalent to minimize the following modified

objective or cost function

J = J + Jq , (4.49)

where Jq =
∑

k ρ1(
qk
σq

). The term Jq is the regulariser of the problem. This

particular procedure is called zero order quadratic regularization. The cost

function J which I will denote J1 1 is given by

J1 1 =
∑

k

ρ1(
ǫk
σn

) +
∑

i

ρ1(
qi
σq

) . (4.50)

The minimum of equation (4.50) is reached at the point

q̂ = (R + µI)−1g , (4.51)

where µ = σ2
n/σ

2
q is the damping parameter of the problem. In filter theory,

µ is also called the pre-whitening parameter (Robinson and Treitel, 1980).

4.3.2 Modifying Jq

A standard procedure in robust statistics is based on redesigning the in-

fluence function in order to attenuate the influence of outliers. A similar

modification can be used to design the regularization function, Jq.
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The data misfit is modeled using the functional ρ1, while for the regulariza-

tion term I will introduce the following modification (Huber, 1981)

ρ2(u) =

{
u2/2 if |u| ≤ a
a |u| − a2/2 if |u| > a

. (4.52)

The deconvolution problem is solved by minimizing the following cost func-

tion

J1 2 =
∑

k

ρ1(
ǫk
σn

) +
∑

i

ρ2(
qi
σq

) . (4.53)

The influence function for ρ2 becomes:

ψ2(u) =

{
u if |u| ≤ a
a sign(u) if |u| > a

(4.54)

The function ρ2 behaves identically to ρ1 for small values of u. When |u| > a,

ρ2 defines a line and its associated influence function becomes a constant.

We can define another function with similar behavior

ρ3(u) = ln(
u2

2
+ 1) . (4.55)

When u is small ρ3 → ρ1. The influence function corresponding to ρ3 is

given by

ψ3(u) =
u

u2

2 + 1
. (4.56)

If ρ3 is adopted the deconvolution problem is solved by minimizing a cost

function designated by J1 3

J1 3 =
∑

k

ρ1(
ǫk
σn

) +
∑

i

ρ3(
qi
σq

) . (4.57)
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The cost function J1 3 can be derived using Bayes’ rule by assuming Gaussian

errors and a Cauchy prior probability to model the unknown parameters

(Sacchi and Ulrych, 1995).

Figure (4.7) shows the functions ρ1, ρ2 and ρ3. In Figure (4.8) the corre-

sponding influence functions ψ1, ψ2 and ψ3 are displayed. The functions

ρ2 and ψ2 were calculated for a = 1 and a = 2. When the parameter a is

small compared to the normalized variable u the width of the transition zone

−a < u < a becomes very narrow. In this case the cost function
∑

i ρ2(ui)

behaves like a l1 norm, l1 =
∑

i |ui|.

4.3.3 Iterative solution

The solution to the least squares problem with zero order quadratic regular-

ization expressed in equation (4.51) can be modified to introduce into the

regularization the functionals ρ2 (Huber criterion) and/or ρ3 (Cauchy crite-

rion). In this case the system of normal equations is obtained by equating

to zero the gradient of the objective function, J1 2 or J1 3,

(R + µQ)q = g . (4.58)

If the problem is regularized with ρ2, the matrix Q, which I will call Q2,

has the following diagonal elements

Q2i i =





1 if | qi

σq
| ≤ a

a
|

qi
σq

|
if | qi

σq
| > a . (4.59)

When ρ3 is adopted, the matrix Q in equation (4.58), which I will denote

Q3, has the following diagonal elements

Q3i i =
1

1 +
q2

i
2σ2

q

. (4.60)

We can make an analogy with the zero order quadratic regularization to

understand the effect of Q on solving the system expressed by equation

(4.58). In the zero order quadratic regularization the damping term µ in
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equation (4.51) corresponds to the ratio of two variances, µ = σ2
n/σ

2
q . When

ρ2 or ρ3 are used, the damping term becomes a ratio of the variance of the

noise to a model dependent variance which I will designate σ2(qi). This

variable takes the following form when the problem is regularized with ρ2:

σ2(qi) =

{
σq if | qi

σq
| ≤ a

σq |qi|
a if | qi

σq
| > a

. (4.61)

The last equation shows that above a threshold the variance of xi is propor-

tional to |xi|. A similar argument leads to the variance for the regularization

with ρ3

σ2(qi) = σ2
q +

q2i
2
, (4.62)

in which case the variance has a parabolic growth with the amplitude of q.

Equation (4.58) is solved using the following iterative scheme:

1. Start with an initial reflectivity sequence q0

2. Select the hyperparameters of the problem σn, σq, and a (Huber cri-

terion) or σn and σq (Cauchy criterion).

3. Compute µ = σ2
n/σ

2
q , Q(0), and the source autocorrelation matrix R.

4. Iteratively solve equation (4.58) using the following algorithm

q(k) = (µQ(k−1) + R)−1g (4.63)

where k is the iteration number.

5. The procedure is stopped when the following tolerance criterion is

satisfied

|J (k) − J (k−1)|
(|J (k)| + |J (k−1)|)/2 < tolerance (4.64)
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where J = J1 2 or J1 3 depending on the regularization criterion.

6. Compute the data misfit. Select new hyperparameters if the misfit

is not satisfactory. The strategy for hyperparameter selection is dis-

cussed in the following section.

Each iteration demands one matrix inversion. The procedure can be acceler-

ated by using an iterative solver like the conjugate gradient (CG) algorithm.

The advantage of using CG is that an approximate solution can be computed

by truncating the number of iterations.

The effect of Q can be summarized as follows. In each iteration, the non-

linearity produces a solution that has the minimum amount of structure or

maximum sparseness. The validity of this type of solutions is subject to the

validity of the sparse reflectivity assumption.

4.3.4 Hyperparameter selection

The determination of the parameter µ in equation (4.58) is crucial, but

unfortunately it cannot be determined a priori. A wrong selection of µ may

yield a solution that is unreasonable. We will assume that the variance of the

noise σ2
n is known. If the Cauchy criterion is adopted, only one independent

parameter σx must be determined (µ = σ2
n/σ

2
q ). When the Huber criterion

is used, two independent parameters are needed: σq and a. The parameter

a is assigned as follows a = c× σq, where c is a scalar (c = 0.1 − 1.). If c is

large (c > 2) the Huber criterion behaves like the standard quadratic form

ρ1.

We adopt the discrepancy principle which determines the parameter σq from

the requirement that the data misfit matches the power of the noise. Since

we have assumed that the noise is normally distributed the data misfit obeys

a χ2 statistics

χ2 =
1

σ2
n

ns∑

k=1

ǫ2k . (4.65)

The expected value of the χ2 statistic is used as a target misfit, E[χ2] = ns

(ns is the number of observations), where the largest acceptable value at
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99% confidence limit is ≈ ns + 3.3
√
ns.

Figure (4.9a) portrays a simulated reflectivity impulse response for a simple

earth model, the seismogram generated by convolving the impulse response

with the source, and the seismic source. Gaussian noise was added to the

synthetic seismogram with standard deviation σn = 5 × 10−2. This repre-

sents a relative noise amplitude of 17.5%. The relative noise magnitude is

specified by a percentage of the maximum noise-free seismogram amplitude

that its standard deviation represents (σn/max(sk) × 100).

The deconvolution was carried out using zero order quadratic regulariza-

tion (minimizing J1 1), the Huber criterion ρ2 (minimizing J1 2) and the

Cauchy criterion ρ3 (minimizing J1 3). The estimated impulse responses are

displayed in Figures 4.9b, c, and d together with the reconstructed seismo-

grams and residuals (original minus reconstructed data). The parameter σs

was selected according to the χ2 criterion.

The solution with ρ1 (zero order quadratic regularization) does not allow

us to properly identify each arrival. The re-weighted strategy yields highly

resolved estimates of the position and amplitude of each seismic reflection.

In general, about 5−10 iterations are sufficient to find a good approximation

to the minimum of the cost function.

The portion of stacked seismic section shown in Figure (4.10a) is used to

test the performance of the re-weighted deconvolution procedure when deal-

ing with field data. The stacked section is obtained by applying normal

moveout correction, and summing traces from common mid point (CMP)

gathers. The data consist of 24 traces which delineate several seismic hori-

zons. In particular, we are interested in the coherent events at ≈ 0.95sec

which may represent a thin layer. The seismic wavelet (4.11) was extracted

using a cepstrum-cumulant approach. The wavelet is retrieved using two

different techniques which are radically different in formulation: a cepstrum

decomposition and a fourth-order cumulant matching approach. Since the

recovered wavelets were very similar, the confidence in the wavelet estima-

tors increases. It is important to stress that, unlike in many deconvolution

scenarios, in seismic deconvolution the kernel function or source wavelet is

unknown. The deconvolved data are shown in Figure (4.10). In this ex-

ample, the problem is regularized by means of the Cauchy criterion (ρ3).
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Figure 4.7: Cost functions. a) ρ1(u), b) ρ2(u) a = 1 , c) ρ2(u) a = 2 , and d)
ρ3(u).

The χ2 criterion was used to estimate the parameter σx. A relative noise

amplitude of 2% was assumed. The latter was used to estimate the standard

error of the noise σn. Similar results were obtained using Huber’s weights.
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Figure 4.8: Influence functions. a) ψ1(u), b) ψ2(u) a = 1 , c) ψ2(u) a = 2
,and d) ψ3(u).
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Figure 4.9: a) Synthetic impulse response (left) , seismogram (center), and
source wavelet (right). The seismogram was contaminated with Gaussian
noise. b) Deconvolution using zero order quadratic regularization: estimated
impulse response (left), reconstructed seismogram (center), and residuals
(original minus reconstructed data). c) Deconvolution by means of the Hu-
ber criterion (a = 1). d) Deconvolution by means of the Cauchy criterion.
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Figure 4.10: (a) Original seismic section. (b) Deconvolved seismic section
using the Cauchy criterion to regularize the inversion. The source wavelet
was retrieved using a combined cepstrum-cumulant approach.
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Figure 4.11: Seismic wavelet corresponding to the data inverted in the pre-
vious Figure.
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4.4 Bayesian inversion of impedance

In this section we discuss the problem of estimating a ”blocky” impedance

model from normal incidence data. We will adopt again the convolution

model

sk = wk ∗ qk . (4.66)

The reflectivity is denoted by qk and the wavelet by wk. The goal is to

recover qk from a noisy version of sk. We assume that impedance constraints

are provided at different time levels. After writing the usual logarithmic

approximation for the impedance

ξk =
1

2
ln(zk/z0) =

Nk∑

i=1

xi , (4.67)

we are now in condition of writing equations (4.66) and (4.67) as two linear

system of equations. In matrix notation

Wq = s + n (4.68)

Cx = ξ + ǫ , (4.69)

where the matrices W and C correspond to the wavelet matrix and to

the impedance constraint matrix, respectively. The matrix W contains the

wavelet properly padded with zeros in order to express discrete convolution

in matrix form. The matrix C is a simple integrator operator. Bayes’ rule is

used to incorporate the prior probability of the unknown reflectivity q into

the problem. In many applications we want to estimate a blocky impedance

profile. In this case, a ‘long tailed’ distribution may be used to estimate a

sparse reflectivity sequence.

Noise in the trace is modelled by means of the usual Gaussian assumption.

The uncertainties of the constraints are also assumed Gaussian (note that

we are using the variable ξ which can take positive and negative values and

not z which is strictly positive).
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Bayes’ rule is used to define the posteriori probability of the reflectivity

sequence. The solution is computed by maximizing the posteriori probability

(MAP solution). This is equivalent to minimize the following cost function:

J = α Jq︸︷︷︸
1

+
1

2
|| 1
σ

(Wq − s)||2
︸ ︷︷ ︸

2

+
1

2
||S−1(Cq− ξ)||2

︸ ︷︷ ︸
3

(4.70)

where σ2 is the variance of the noise in the seismic trace and the matrix S

is a diagonal matrix with the following elements

Sii = σci . (4.71)

In equation (4.70) we are specifying three different features that the solution

must satisfied:

• 1 - The solution must be sparse.

• 2 - The solution must honour the seismic trace.

• 3 - The solution must honour a set of impedance constraints.

The parameter α is the weighting parameter or hyperparameter that de-

termines the relative amount of sparseness that can be brought into the

inversion. The term Jq is derived using four different priors which induce

the associated regularization criteria for sparse spike inversion. The four

sparseness criteria that we have studied are the Lp criterion, the Cauchy

criterion, the Sech criterion, and Huber criterion. These criteria were all

used in robust statistics to diminish the influence of outliers in estimation

problems (Huber, 1981). In our application, these criteria are used to im-

pose sparseness into the reflectivity estimate. Jq in equation (4.70) is given

by one of the following regularization terms

Jp =
1

p

∑

i

|qi|p (4.72)

JCauhcy =
1

2

∑

i

ln(1 +
q2i
σ2

q

) (4.73)
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JSech =
∑

i

ln(cosh
qi
σq

) (4.74)

JHuber =
∑

i

{
q2i /2 if |qi| ≤ qc
a |qi| − q2c/2 if |qi| > qc

. (4.75)

A non-linear conjugate gradient algorithm is used to minimize the cost func-

tion. The parameter α is continuously adapted to satisfy a misfit criterion.

As an example we show the inversion of two traces with the Lp (p = 1.2)

prior and with the Cauchy criterion. The hyperparameters of the problem

were fitted using a χ2 criterion. The same misfit target was used in both

examples, χ2 = number of traces + number of constraints.

In Figure (4.12) we portray a window of a sesimic section pre-processed for

impedance inversion. The inversion was carried out using the Huber and Lp

criteria (p = 1.1). The reflectivities estimates are shown in Figures (4.13)

and (4.15). The constrained inversion of the impedance profile is dipected

in Figures (4.14) and (4.16).
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Figure 4.12: data
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Figure 4.13: Reflectivity inversion using the Lp norm, p = 1.1
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Figure 4.14: Constrained impedance inversion using the Lp norm, p = 1.1.
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Figure 4.15: Reflectivity inversion Huber norm.
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Figure 4.16: Constrained impedance inversion using Huber norm
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4.5 Linear programming impedance inversion

In this section I will discuss the classical approach to impedance inversion

proposed by Oldemburg et al. (1983).

I will also provide a subroutine to perform the L1 inversion of a seismogram

using the a Linear programming solver.

The subroutine l1_inv4 is designed to perform 1-D inversion of the acous-

tic impedance. The algorithm permits the incorporation of impedance con-

straints at different times in the form of upper and lower bounds. The

convolution model is adopted:

sk = wk ∗ qk . (4.76)

The wavelet is assumed to be known or to be well approximated by an

estimate. The reflectivity is denoted by qk and the wavelet by wk. The goal

is to recover qk from a noisy version of sk. The algorithm also assumes that

impedances constraints are provided at different time levels. In such a case

we can write the usual logarithmic approximation for the impedance

ξk =
1

2
ln(zk/z0) =

Nk∑

i=1

qi , (4.77)

In matrix notation we can write

Wq = s + e (4.78)

Cq = ξ (4.79)

where the matrices W and C correspond to the wavelet matrix and to

the impedance constraint matrix, respectively. The matrix W contains the

wavelet properly padded with zeros in order to express discrete convolution

in matrix form. The matrix C is a simple integrator operator.

The procedure proposed to recover the reflectivity is based on the minimiza-

tion of the l1 cost function of the problem. Instead of using a Conjugate

4Let me know if you want to have the complete f77 source code
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Gradient technique to minimize the cost function (like in the Bayesian ap-

proach discussed in the previous section.) we adopt the linear programming

approach.

4.5.1 Constrained minimization using linear programming

The cost function of the problem is defined as

J = α|q|1 + |e|1 . (4.80)

and the constraint minimization problem is set as follows

Minimize J = α|q|1 + |e|1 (4.81)

subject to Wq = s + e (4.82)

and ξl < Cq < ξu . (4.83)

The last problem is solved using the linear programming approach. We

first specify a tableau (subroutine tableau) where we load the objective

function, the data constraint and the inequality constraints. The Linear pro-

gramming solution is then invoked to retrieve the solution (subroutine cl1).

The parameter α is the tradeoff parameter of the problem. In the program

alpha is given in percentage of the l1 norm of the wavelet. This is analogous

to the pre-whitening parameter in spiking deconvolution which is given as

percentage of the zero lag autocorrelation coefficient.

Usually, 1−10% should be enough to stabilize the inversion. The parameter

also controls the sparseness of the solution (number of nonzero reflectivity

samples). When α → 0 the inversion is too rough (unstable). When α is

too large (50%) the inversion is too sparse.

4.5.2 Example

A sparse reflectivity series convolved with a 20Hz Ricker wavelet is used to

test the algorithm. The length of the trace is 150 samples. The additive noise

is white and Gaussian (SNR=20). In this example we retrieved impedance

bounds every 10 samples. The total number of impedance bounds to be

honoured is nic = 15. The results are shown in Figure (4.17).
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Figure 4.17: (a) Seismic reflectivity. (b) Input seismic trace. (c) L1 inversion
of the reflectivity. (d) Predicted trace (convolution of the wavelet with the
inverted reflectivity). (e) True impedance profile. The bars indicate the
impedance bounds (hard constraints). (f) Impedance recovered with the L1

inversion, note that the bounds are properly honoured

4.5.3 Linear programming code

The subroutine l1_inv is the basic program that you need for sparse inver-

sion. Some variables were set with default values. The subroutine tableu

is used to load the objective function of the problem, the data constraints

and the impedance bounds.

The code is too long, this is why I only print the part containing the com-
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ments. If you wish to try with this code, I have a ready-to-use version in a

disk.

subroutine l1_inv(t,n1,w,nw,

* nic,ncon,z_upper,z_lower,

* alpha,r,tp,iter,e1,e2)

c This subroutine does the l1 inversion of a seismogram

c using the linear programming approach

c INPUT

c n1 : number of samples of the trace

c t(n1) : the seismic trace (properly scaled)

c nw : number of points of the wavelet

c w(nw) : the wavelet (properly scaled)

c nic : number of impedance constraints

c ncon(nic) : position of each impedance constraint in samples

c z_upper(nic): upper impedance constraint at the position ncon

c z_lower(nic): lower impedance constraint at the position ncon

c the impedance bounds are for the variable

c 0.5ln(z/z0) (see text)

c alpha : regularization parameter.

c alpha is a percentage of the l1 norm of the wavelet.

c In spiking deconv.(l2) is a percentage of the main diagonal

c of the autocorrelation matrix. The strategy that I have

c adopted is similar. Use 1-10%.

c

c OUTPUT

c r(n1) : the reflectivity estimate

c tp(n1): the predicted seismic trace, i.e., r(t)*w(t)

c iter : number of iterations that the linear programing routine

c used to find a feasible solution
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c e1 : the l1 error

c e2 : the rms error

c e1,e2 are the misfit figure.

c SUBR: tableau : make the tableau for the lprog.

c cl1 : solve the lprog. problem

c NOTES: the varialbe KODE serves to check is the lprog. routine

c has found a feasible solution. KODE=0 (always) before

c calling to cl1 (The linear prog).

c KODE=0 (always) after calling cl1 for normal execution.

parameter (nrd=400,nwd=101,ntd=500,ncd=400,

* klmd=nrd+2*ntd+2*ncd,

* klm2d=nrd+2*ntd+2*ncd+2,

* nklmd=2*(ntd+nrd)+ntd+2*ncd,

* n2d =ntd+nrd+2)

real * 8 q(klm2d,n2d), x(n2d), res(klmd)

real * 8 cu(2,nklmd)

integer iu(2,nklmd), s(klmd)

real * 8 w(nwd),r(nrd),t(ntd),tp(ntd)

real * 8 z_upper(nrd),z_lower(nrd)

integer ncon(nrd)

real * 8 toler

real * 8 alpha

real * 8 e1,e2

nr=n1
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nt=n1+nw-1

do i=nr+1,nt

t(i)=0.

enddo

c Prepare the tableau for the simplex

call tableau(nw,w,nr,nt,t,alpha,nic,ncon,zcon,

# z_upper,z_lower,q,

# k,l,m,n)

.

.

.

.
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4.6 Non-minimum phase wavelet estimation

In this section we will analyse the problem of estimating a non-minimum

phase wavelet for seismic deconvolution/inversion. The wavelet we have used

to process our data in the preceeding section was estimated using a cumulant

approach. We will discuss here how to estimate the seismic wavelet using

the aforementioned procedure.

One of the early techniques for nonminimum phase signal decomposition has

been homomorphic filtering based on the complex cepstrum (Ulrych,1971)

or differential cepstrum (Bednar and Watt, 1985). Anyone exposed to ho-

momorphic filtering has probably experienced the gap that exits between

theory and practice. The approach is elegant and general (Hilbert transfor-

mation and spectral factorization can be implemented by means of the ho-

momorphic transform.) However, practical problems have provided serious

obstacles for the cepstral approach in the deconvolution arena. In particu-

lar cepstral decomposition assumes that the reflectivity is an impulsive train

that can be completely separated from the wavelet in the cepstral domain

(Ulrych, 1971). In fact, the technique does not even consider the reflectivity

sequence as a stationary process. Another problem with the cepstrum is

that the homomorphic system does not allow for the presence of additive

noise in the formulation of the problem. In fact, the highly nonlinear nature

of the cepstrum complicates the effect of additive noise.

The definition of the cepstrum in terms of higher order cumulants enables

us to retrieve the cepstrum of the source wavelet (analytically) when the

reflectivity does not consist of a train of spikes. Since the bispectrum and

the trispectrum conserve the phase characteristic of the wavelet it is evident

that the cepstrum derived from these polyspectra will also conserve phase

information.

4.6.1 Non-minimum phase system identification

The classical system identification literature has been primarily dominated

by least squares approaches. Least squares based techniques are attractive

since they yield maximum likelihood estimates of parameters where the ob-

servable are a linear combination of a white sequence. These identification
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procedures use the autocorrelation function of the data. However, the auto-

correlation function annihilates the phase of the system (c.f. the wavelet),

and therefore these techniques are useful primarily to identify minimum

phase systems, or systems where the phase can be specified a priori i.e., a

zero phase assumption.

We begin with Wold’s decomposition theorem. According to this celebrated

theorem any discrete stationary process can be expressed as the sum of

two independent processes, one purely deterministic, and another purely

non-deterministic. The decomposition theorem also states that the purely

non-deterministic part can be written in terms of a linear transformation

of a white process, ǫk. In other words as long as the process is stationary,

there is always a representation of the process given by

xt =
∑

k

ǫkht−k , (4.84)

where for simplicity we have omitted the deterministic part of the process

which is not needed in the seismic deconvolution scenario. Clearly, the

Wold decomposition theorem dictates that a decomposition exists where

the wavelet hk is causal and minimum phase. It is clear that one of the

consequences of this theorem is that the description of the process is non-

unique. One can generate a stationary nonlinear process and according to

the theorem this process will have a MA representation given by equation

(4.84).

We will use the following model to describe the seismic trace

xk = rk ∗ wk

sk = qk + nk
(4.85)

where xk is the noise-free seismic trace, and sk is the trace corrupted with

noise. The source wavelet is denoted by wk and the reflectivity sequence

by qk. We will assume that qk is white and iid. The noise nk is considered

zero-mean, Gaussian, and independent of xk. The transfer function of the

system is given by
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W (z) = |W (z)|eiΦ(z) . (4.86)

The seismic deconvolution problem is to reconstruct the magnitude and the

phase of the transfer function from the output data sk. Thus far, we have

only considered that qk is white. To continue with the analysis the following

comments are in order:

1. If qk is Gaussian and W (z) is minimum phase, autocorrelation based

methods will correctly identify both the amplitude and the phase of

the system.

2. If qk is Gaussian and W (z) is nonminimum phase, no technique will

correctly identify the phase of the system.

3. If qk is non-Gaussian and W (z) is nonminimum phase, true magnitude

and phase of the system transfer function can be recovered by knowing

the actual distribution of qk. For MA processes of order one, it has

been demonstrated that a L1 optimization provides an estimate of

the amplitude and phase of the system when the driving noise of the

process is non-Gaussian (Scargle, 1977).

The above statement (3) is very important. In fact, it suggests that we can

still have faith in stochastic wavelet estimation procedures. It is also clear

that non-Gaussianity plays a key role in nonminimum phase wavelet estima-

tion. In fact, MED-type estimators are an example where departure from

normality is postulated. The non-uniqueness expressed by Wold theorem is

eliminated by restricting qk to be non-Gaussian.

Higher order spectra are defined in terms of higher order cumulants and

contain information regarding deviation from Gaussianity. Quite contrary

to power spectral density estimates, higher order spectra retain phase infor-

mation which allows nonminimum phase system identification/estimation.

4.6.2 The bicepstrum

If W (z) is stable and if qk is non-Gaussian, white, iid., with skewness β 6= 0

then the bispectrum of xk is given by
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Bx(z1, z2) =
∑

m

∑

n

r(3)x (m,n)zn
1 z

m
2 (4.87)

where

r(3)x (m,n) = E[xkxk+mxk+n] , (4.88)

is the third order moment of the data. Since the third order moment of

a Gaussian signal vanishes, we can write Bs(z1, z2) = Bx(z1, z2) . The bis-

pectrum can be written in terms of the transfer function W (z) as follows

(Nikias and Raghuveer, 1987)

Bx(z1, z2) = βW (z1)W (z2)W (z−1
1 z−1

2 ) . (4.89)

Since the wavelet is, in general, nonminimum phase, the transfer function

can be written as

W (z) = AzlWmin(z)Wmax(z−1) (4.90)

where A is a constant, l an integer associated with a linear phase shift, and

Wmin(z), Wmax(z−1) are the minimum and maximum phase components

of the wavelet, respectively. Substituting equation (4.90) into (4.89) the

bispectrum becomes

Bx(z1, z2) = βWmin(z1)W
min(z2)

Wmax(z−1
1 )Wmax(z−1

2 )

Wmin(z−1
1 z−1

2 )Wmax(z1z2) . (4.91)

Now, we define the bicepstrum as

b̂(n,m) = Z−1[ln Bx(z1, z2)] (4.92)

where Z−1 stands for the inverse 2-D z-transform. We note that
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ln[Bx(z1, z2)] = ln[β]

+ ln[Wmin(z1)] + ln[Wmin(z2)]

+ ln[Wmax(z−1
1 )] + ln[Wmax(z−1

2 )]

+ ln[Wmin(z−1
1 z−1

2 )] + ln[Wmax(z1z2)] . (4.93)

The inversion of equation (4.93) yields a complete separation into minimum

phase and maximum phase components. Since the homomorphic transform

maps minimum phase components into the positive semi-axis of the cep-

strum and maximum phase components into the negative semi-axis, it is

easy to verify that

b̂(m, 0) = ŵmin(m), m > 0 (4.94)

b̂(m, 0) = ŵmax(m), m < 0 . (4.95)

where ŵ(n) indicates the cepstrum of the wavelet. It is clear that with only

two semi-axes of the bicepstrum we can completely define the cepstrum of

the wavelet (the value ŵ(0) cannot be recovered but represents only a scale

factor).

We use a similar approach below to compute the tricepstrum (the cepstrum

of the fourth order cumulant).

4.6.3 The tricepstrum

Defining the trispectrum as

Tx(z1, z2, z3) =
∑

m

∑

n

∑

l

r(4)x (n,m, l)zn
1 z

m
2 z

l
3 (4.96)

where r
(4)
x (n,m, l) is now the fourth order cumulant of xk. The trispectrum

can be written in terms of the transfer function of the system as follows



140 CHAPTER 4. DECONVOLUTION OF REFLECTIVITY SERIES

Tx(z1, z2, z3) = γA4Wmin(z1)W
min(z2)W

min(z3)

Wmax(z−1
1 )Wmax(z−1

2 )Wmax(z−1
3 )

Wmin(z−1
1 z−1

2 z−1
3 )Wmax(z1z2z3) (4.97)

After taking logarithm of the trispectrum we end up with

ln[Tx(z1, z2, z3)] = ln[γA4] + ln[Wmin(z1)] + ln[Wmin(z2)] + ln[Wmin(z3)]

+ ln[Wmax(z−1
1 )] + ln[Wmax(z−1

2 )] + ln[Wmax(z−1
3 )]

ln[Wmin(z−1
1 z−1

2 z−1
3 )] + ln[Wmax(z1z2z3)] . (4.98)

The inversion of the last expression will map minimum and phase compo-

nents into the tricepstrum domain as follows:

t̂(m,n, l) =






ln[γA4] m = n = l = 0
ŵmin(m) m > 0, n = l = 0
ŵmin(n) n > 0, m = l = 0
ŵmin(l) l > 0, m = n = 0
ŵmax(m) m < 0, n = l = 0
ŵmax(n) n < 0, m = l = 0
ŵmax(l) l < 0, m = n = 0
ŵmin(m) m = n = l < 0
ŵmax(m) m = n = l > 0 .

The origin of tricepstrum, t̂(0, 0, 0) = ln(A4γ) represents a scale factor and,

therefore, can be ignored.

In general, we estimate the wavelet from 2 semi-axis of the tricepstrum:

t̂(m, 0, 0) = ŵmin(m), m > 0 (4.99)

t̂(m, 0, 0) = ŵmax(m), m < 0 . (4.100)
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4.6.4 Computing the bicepstrum and the tricepstrum

We first note that if z1 = e−iω1 and z2 = e−iω2 we have

B̂x(ω1, ω2) = ln[Bx(ω1, ω2)]
= ln |Bx(ω1, ω2)| + i[2kπ + Φ(ω1, ω2)] .

(4.101)

Since the phase of the complex variable B̂x(ω1, ω2) is undefined it appears

that an unwrapping procedure is mandatory . Fortunately, the unwrapping

can be omitted by defining the differential cepstrum, as follows

dB̂x(ω1, ω2)

dω1
=

1

Bx(ω1, ω2)

dBx(ω1, ω2)

dω1
(4.102)

where the derivatives are obtained by

dBx(ω1, ω2)

dω1
= F2[−imrx3

(m,n)] (4.103)

and we can write (4.102) as

b̂(m,n) =
1

m
F−1

2 [
F2[mrx3

(m,n)]

F2[rx3
(m,n)]

] . (4.104)

A similar algorithm is used to estimate the tricepstrum

t̂(m,n, l) =
1

m
F−1

3 [
F3[mrx4

(m,n, l)]

F3[rx4
(m,n, l)]

] . (4.105)

4.6.5 Examples

In the first simulation we convolved a nonminimum phase wavelet with an

exponentially distributed sequence with skewness β = 1. The additive noise

is white and Gaussian. The standard deviation of the noise represents 1%

of the maximum amplitude of the signal. We used 6 records of 600 samples

to estimate the third order cumulant. The bicepstrum was computed using

equation (4.104). Figure (4.18) shows the true cepstrum of the wavelet and
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Figure 4.18: (a) Cepstrum of the true wavelet. (b) Cepstrum of wavelet
derived from the bicepstrum (equations (11) and (12)).

the cepstrum extracted form the bicepstrum using. Figure (4.19) shows the

true and the estimated wavelets together with the associated minimum and

maximum phase components. The maximum phase component has a zero

close to the unit circle that is manifested in the negative semi-axis of the

cepstrum as a ‘long’ decaying oscillatory signal.
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Figure 4.19: (a) and (b): True minimum phase and maximum phase com-
ponents of the wavelet (c). (d), (e), and (f): Estimators of (a), (b), and (c)
computed form the bicepstrum.
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The same wavelet was convolved with a white, non-Gaussian, reflectivity

with non vanishing kurtosis. The fourth order cumulant was computed from

4 records of 1000 samples each. The cepstrum of the wavelet was estimated

from the tricepstrum. The results are shown in Figure (4.20). The time

signature and its maximum and minimum phase components are displayed

in Figure (4.21). The technique permits the recovery of the cepstral coeffi-

cients of the wavelet with an accuracy proportional to the accuracy of the

estimation of the cumulant.

In this section we provide an heuristic analysis of the performance of the

algorithm.

We simulate 20 realizations of a non-Gaussian (γ 6= 0) process which is con-

volved with the source wavelet portrayed in Figure (4.22). Figure (4.23)

shows the wavelet retrieved from the tricepstrum. The fourth-order cumu-

lant was estimated using 4 segments of 1000 samples each. In figures 4.24)

and (4.25), we used 4 segments of 500 and 250 samples , respectively. These

results indicate that a fairly good reconstruction of the amplitude and phase

can be achieved for large data sets.

Figure (4.26) portrays a segment of a seismic section pre-processed for

impedance inversion. The segment is composed of 24 traces of 300 sam-

ples each. The fourth order cumulant is estimated from each trace and the

average cumulant is used to identify the wavelet. Figure (4.27) shows the

cepstrum of the wavelet retrieved from one of the axis of the tricepstrum.

The minimum and maximum phase components of the wavelet are shown

in Figure (4.28).

The tricepstrum estimator of the wavelet is illustrated in Figure (4.29).

For comparison we also show the estimator of the wavelet computed using

a cumulant matching approach (Velis and Ulrych, 1996). The later uses a

global optimization procedure (simulated annealing) to find the wavelet that

best reproduces the cumulant of the data.



4.6. NON-MINIMUM PHASE WAVELET ESTIMATION 145

Figure 4.20: (a) Cepstrum of the true wavelet. (b) Cepstrum of wavelet
derived from the tricepstrum.

Figure 4.21: (a) and (b): True minimum phase and maximum phase com-
ponents of the wavelet (c). (d), (e), and (f): Estimators of (a), (b), and (c)
computed from the tricepstrum.
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Figure 4.22: Synthetic wavelet.
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Figure 4.23: Wavelet estimation using the tricepstrum. The fourth order
cumulant was estimated from 4 segments of 1000 samples each. The figures
correspond to 20 realizations of the process.
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Figure 4.24: Wavelet estimation using the tricepstrum. The fourth order
cumulant was estimated from 4 segments of 500 samples each. The figures
correspond to 20 realizations of the process.
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Figure 4.25: Wavelet estimation using the tricepstrum. The fourth order
cumulant was estimated from 4 segments of 250 samples each. The figures
correspond to 20 realizations of the process.
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Figure 4.26: Segment of seismic section pre-processed for impedance inver-
sion.
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Figure 4.27: Cepstrum of wavelet estimated from the tricepstrum of the
data. An average fourth-order cumulant derived from 24 traces was used to
retrieve the tricepstrum.

Figure 4.28: Minimum and maximum phase decomposition of the wavelet
after cepstral liftering.
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Figure 4.29: Wavelet estimates computed using the tricepstrum (left) and
cumulant matching plus non-linear optimization (right).
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Figure 4.30: Schematic representation of the tricepstrum for a non-Gaussian
MA process.
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4.7 Minimum entropy deconvolution

The MED technique (minimum entropy deconvolution) proposed by Wig-

gins (1978), offers a different approach to seismic deconvolution. While the

classical methods such as spiking and predictive deconvolution (Robinson

and Treitel, 1980) seek to whiten the spectra, the MED seeks the smallest

number of large spikes which are consistent with the data.

Despite these differences, both methods constitute a linear approach to seis-

mic deconvolution. The spiking and predictive filters are obtained by in-

verting the Toeplitz matrix; the MED filter is calculated in an iterative

procedure in which the Toeplitz matrix is inverted at each step (Wiggins,

1978). These filters are quite different in nature, but as they are linear oper-

ators none of them can handle band-limited data properly. This limitation

is difficult to overcome when dealing with noisy data.

In this work a frequency-domain version of the MED scheme is developed.

This approach involves maximizing a generalized entropy norm with respect

to the seismic reflectivity. The particular norm in which we are going to focus

our attention (the logarithmic norm) has also been used for deconvolution

and wavelet extraction by Postic et al. (1980) in an attempt to overcome

the limitations of the classical MED method (Wiggins, 1978).

For band-limited signals the deconvolution can be achieved by reconstruc-

tion of the reflectivity spectrum. Two main procedures have been developed

to reach the latter goal. The first method (Levy and Fullagar, 1981) is based

on a linear programming (LP) approach. This method attempts to find the

reflectivity series with minimum absolute norm remaining consistent with

the data. The second approach (Lines and Clayton, 1977) fits a complex

autoregressive (AR) model to the data spectrum and from the informa-

tion available in the actual band attempts to extrapolate the missing low

and high frequencies of the reflectivity. Both methods have been improved

and expanded to cope with acoustic impedance inversion from band-limited

reflection seismograms. In the LP approach, Oldenburg et al. (1983) incor-

porated impedance constraints to the problem.

Our method can be mainly compared with the LP approach. This is because

both methods seek for an extremum point of a given norm which is a function

of the underlying unknown function: the reflectivity. The main advantage
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of an entropy norm over the absolute norm (l1) is that the minimization pro-

cedure leads to an easy to handle algorithm, avoiding the computationally

expensive cost of linear programming routines. It must be stressed that the

proposed method provides a unifying thread between the LP (Oldenburg et

al., 1983) and the MED approach (Wiggins, 1978).

4.7.1 Minimum Entropy estimators

The normal incidence seismogram model can be expressed as the convolution

between two basic components: the reflectivity yt and the wavelet wt. If we

denote the noise-free seismic trace by xt then

st = wt ∗ qt (4.106)

where * denotes discrete convolution. The goal of the deconvolution process

is to recover qt from st. If we adopt a linear scheme, an operator ft such

that

qt = st ∗ ft (4.107)

must be obtained. Note that if st is a band-limited signal, only a part of qt

can be recovered.

Usually the signal is contaminated with noise, then the normal incidence

seismogram model is

st = wt ∗ qt + nt. (4.108)

We want to compute a filter ft such that ft∗wt = δt, but usually we have an

estimate of the filter f̂t. Then f̂t ∗ wt = at, where at is called the averaging

function which in the ideal case should resemble a delta function (Oldenburg,

1981). Operating with the filter f̂t on the seismic trace

q̂t = at ∗ qt + f̂t ∗ nt (4.109)

= qt + (at − δt) ∗ qt + f̂t ∗ nt. (4.110)
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Equation (4.110) shows that the filter not only has to make at close to a

delta, but also has to keep the noise level as small as possible. It follows

that we are faced with the usual trade-off between resolution and statistical

reliability.

At this point it must be said that even with the best seismic field and

processing techniques, the band-pass nature of the ”earth system” is always

present, i.e. after removing the wavelet, only a portion of the reflectivity

spectrum is available. In other words q̂t = qt ∗ at is band-limited. For

further developments q̂t will be called the band-limited reflectivity and qt

the full-band reflectivity. We will assume that the wavelet has been removed,

therefore at has zero phase with constant amplitude in the frequency range

[ωL, ωH ] and zero amplitude outside that interval.

Estimating the full-band reflectivity from the band-limited reflectivity is

a nonunique linear inverse problem. Neglecting the noise term, the last

assessment may be easily confirmed taking the Fourier transform of equation

(4.102)

Q̂(ω) = A(ω) ·Q(ω). (4.111)

It is easy to see that Q(ω) can take any value at those frequencies at which

A(ω) vanishes. The knowledge of Q̂(ω) is not enough to estimate the portion

of Q(ω) outside the non-zero band of A(ω). Hence, there exists an infinite

number of models qt that satisfy equation (4.110). In other words, Q̂(ω)

gives no information about the parts of Q(ω) which belong to the null space.

In the next analysis we will discuss how to limit the nonuniqueness of the

problem.

4.7.2 Entropy norms and simplicity

Among all the possible solutions to the problem stated in the previous sec-

tion, we will look for those particular solutions in which a reasonable feature

of the reflectivity is reached. Usually, parsimony is a required feature of an

acceptable model. “Minimum structure” or “simple solution” are terms of-

ten used for a model with parsimonious behaviour. In Wiggins’ original

approach, the term “minimum entropy” is used as synonymous with “maxi-
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mum order”. The term is appropriate to set up the main difference between

MED and spiking or predictive deconvolution. While spiking or predictive

deconvolution attempt to whiten the data (minimum order), the MED ap-

proach seeks for a solution consisting mainly of isolated spikes. Wiggins’

entropy was inspired by factor analysis techniques, and can be regarded as

a particular member of a broad family of norms of the form

V (q) =
1

NF (N)

N∑

i=1

q′i.F (q′i), (4.112)

where the vector q represents the reflection coefficient series of length N ,

and q′i an amplitude normalized measure given by

q′i =
yi

2

∑
k yk

2/N
. (4.113)

In formula (4.112), F (qi) is a monotonically increasing function of qi , which

is often called the entropy function. Having defined F (qi), the following

inequality can be established:

F (1)/F (N) ≤ V ≤ 1. (4.114)

The normalization factor in equation (6) guarantees the same upper limit

for any entropy function. Note that for the most simple case, a series with

all zeros and one spike, the norm reaches the upper bound V = 1. When all

the samples are equal V reaches the lower bound.

The original MED norm is obtained when F (q′i) = q′i. In many synthetic

examples we found that this norm is very sensitive to strong reflections. To

avoid such inconvenient we have tested other norms concluding that better

results are achieved with the logarithmic norm in which F (qi) = ln(q′i)

4.7.3 Wiggins’ algorithm

A trivial solution to the problem stated in equation (4.107) is
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f̂t = s−1
t , (4.115)

q̂t = δt.

Where st
−1 stands for the inverse of si if it exists. To avoid such solution a

fixed length must be imposed to the operator fi, then

qn =
LF∑

l=1

fl.sn−l. (4.116)

The criterion for designing the operator fk may be set as

∂V

∂fk
= 0, k = 1, 2, ...., LF ; (4.117)

∂V

∂fk
= 1

NF (N)

∑
i(F (q′i) + q′i

∂F (q′i)

∂q′i
)

∂q′i
∂fk

.

From equation (4.107) it follows that ∂qn

∂fk
= sn−k, and after some algebraic

manipulations equation (7.19) becomes

∑

l

fl

∑

n

sn−ksn−l =
∑

i

bisi−k, (4.118)

where

bi =
G(q′i)qi

1
N

∑
j G(q′j)q

′
j

(4.119)

and

G(q′i) = F (q′i) + q′i
∂F (q′i)

∂q′i
. (4.120)

We can use two criteria F (q′i) = q′i (Wiggins’ entropy function) or F (q′i) =

ln(q′i) (logarithmic entropy function). Numerical experiments suggests that

the second one appears to be a better choise for seismic deconvolution (Sac-

chi et. al, 1994).
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Expression (4.118) corresponds to the system used to design the well known

Wiener or shaping filter (Robinson and Treitel, 1980). This filter seeks to

convert an input signal x into a desired output b. In matrix notation:

Rf = g(f), (4.121)

where R is the Toeplitz matrix of the data and the vector g(f) is the cross-

correlation between b and s. The system must be solved through an iterative

algorithm:

f (n) = R−1 · g(f (n−1)), (4.122)

where the upper index n denotes iteration number. In each iteration the

system is solved with Levinson’s algorithm (Robinson and Treitel, 1980).

The initial value for this system is f (0) = (0,0,0, · · · ,1, · · · ,0,0,0). Note

that in each iteration the system attempts to reproduce the features of the

reflectivity series. If the proper length is chosen, the system leads to a useful

maximum and the main reflections can be estimated (Wiggins, 1978).

4.7.4 Frequency domian algorithm (Sacchi et. al, 1994)

In the frequency domain, the maximization of the entropy is subjected to

the following constraint:

Q(ω) = Q̂(ω), ω ∈ [ωL, ωH ]. (4.123)

For practical purposes let us define equation (4.110) by means of the discrete

Fourier transform

Q̂k = Ak ·Qk, (4.124)

where the lower index k denotes frequency sample. So the maximization of

V with mid-band constraints can be written down as
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Maximize V, (4.125)

subjected to

Qk =
N−1∑

n=0

q̂ne
−i2πkn

N , k = kL, · · · , kH , (4.126)

where kL and kH are the samples that correspond to ωL and ωH , respec-

tively. It is easy to see that the mid-band [ωL, ωH ] must be kept unchanged

throughout the algorithm.

The solution of the last problem can be achieved solving the following system

of equations:

∂V

∂Qk +
∑kH

l=kL
λl

∂Ql
∂Qk

(Ql −
∑N−1

n=0 q̂ne
−i2πnl

N ) = 0
(4.127)

Qk −
N−1∑

n=0

q̂ne
−i2πnk

N = 0, k = kL, · · · , kH (4.128)

where λl are the Lagrange multipliers of the problem. Taking the derivative,

inserting Qk in the constraint and then the multipliers in equation (18), the

following result is obtained:

Qk =






∑N−1
n=0

G(q′n)qne−i2πkn/N∑
j
G(q′j)q

′

j/N
, k /∈ [kL, kH ];

Q̂k, k ∈ [kL, kH ].

From equations (4.119) and (4.123) it is easy to see that

Qk =

{
Bk, k /∈ [kL, kH ];
Q̂k, k ∈ [kL, kH ],

(4.129)

where Bk is the discrete Fourier transform of bt (4.119). Because bt is a

nonlinear function of qt, the problem must be solved as follows:

1. The algorithm is initialized by letting qt = q̂t
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Figure 4.31: True reflectivity (top), band-limited reflectivity (center), and
inverted reflectivity using FMED (bottom)

2. bt and Bk are computed.

3. The missing low and high frequencies are replaced by Bk.

4. From the inverse Fourier transform, an estimate of the reflectivity is

calculated. The norm V is also evaluated to check convergence and a

new iteration starts in step 2.

The algorithm, as we can see, is very simple and can be efficiently coded

used the FFT.
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The subroutine to run FMED

We have developed a FMED library to recosntruct missing low and high

frequencies after zero-phase deconvolution5.

The subroutine fmed is called as follows:

subroutine FMED(s,ns,fl,fh,dt,nfft,cw1,cw2,iter_max,th,io,fmax

where the following parameters are provided to the subroutine:

s(n1) A seismic trace of ns samples. The trace is a band-limited version of

the reflectivity

fl,fh min and max frequency that define the band-limited reflectivity (in

Hz).

dt sampling rate in sec.

nfft Number of freq. samples for the fft

cw1(nfft),cw2(nfft) pre-computed tables of exponentials for the FFT.

See subroutine fftcw.

iter_max Maximum number of iterations (≤ 10)

th Values of reflectivity below th are set to zero , if you doubt th=0.

io If io.eq.0 the algorithm completes all the high frequencies up to the

the Nyquist frequency. If io.ne.0 the algorithm will complete the high

frequencies up to fmax.

fmax maximum frequency to complete when io.ne.0

5Let me know if you are interested in a copy of this library
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Chapter 5

Signal-to-noise-ratio
Enhancement

5.1 FX filters

Signal-to-noise-ratio enhancemnet in the FX domain has been proposed by

Canales (1994) as a method for random noise attenuation. The technique is

widely accepted and used in the industry. The method is very effective in

attenuating randon noise, it is easy to implement and very efficient in the

computational sence.

Signal predictability has been extensively studied in the context of AR filter

and in harmonic retrival via ARMA models (see for instance, Ulrych and

Clayton, 1976).

The idea is quite simple, and can be summiraized as follows. In the FX

domain linear events or quasilinear events manisfest themselves as a super-

position of harmonics. If noise is taken into account, an optimal model to

predict a superposition of harmonics is an ARMA model. However, given

the fact that ARMA models might not be very stable (they involve the so-

lution of an eigenvalues problem), we will propose to replace the ARMA

model by a long AR filter. In this case, the predicbility is not optimal, but

the problem can be easily solved using predictor error filters of the type we

have already analyzed in the context of deconvolution.

We will start this lecture by introducing the concept of predictivilty via a

very simple model composed of a superposition of harmonics.

163
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Later we will discuss a novel approach proposed by Soubaras (1994, 1995)

which is based on the concept of quasi-predictivilty.

5.1.1 The signal model

The signal model is based on the assumption that seismic data can be repre-

sented as a superposition of events with linear moveout. In general, a seismic

section can be divided into overlapping windows where this assumption is

valid.

We first consider a seismic section that consists of a single waveform. The

frequency domain representation of s(f, x) is given by

S(f, x) = A(f) ei2πfθx , (5.1)

where A(f) indicates the source spectrum, f the temporal frequency, x

the spatial variable or offset and θ the apparent slowness along x. We

will assume that the spatial variable x is regularly discretized according to

x = (k − 1)∆x , k = 1 : N . For any temporal frequency, f , we can write

Sn = Aeiαn, n = 1, N (5.2)

where α = 2πfθ∆x. The following recursion is obtained by combining Sn

and Sn−1

Sn = a1Sn−1 . (5.3)

where a1 = exp(iα). The last equation is a first order difference equation

that allows us to recursively predict the signal along the spatial variable x.

Similarly, it can be shown that the superposition of p complex harmonics (p

linear events in x− t) can be represented by a difference equation of order p

Sn = a1Sn−1 + a2Sn−2 + . . . apSn−p . (5.4)

The last equation can be written in prediction error form as follows

p∑

k=0

gkSn−k = 0 , (5.5)
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where the coefficients of the prediction error filter are related to the coeffi-

cients ak in equation (4) by the following expressions

g0 = 1, gk = −ak, k = 1, p .

So far we have been able to define a recursive expression to predict a noise-

free superposition of complex harmonics. In real applications, however, ad-

ditive noise will corrupt the data

Yn = Sn +Wn , (5.6)

where Wn represents a white noise sequence. Substituting Sn−k = Yn−k −
Wn−k into equation (6.19) leads to the following system of equations that

defines the signal model in terms of the prediction error filter

∑p
k=0 gkYn−k =

∑p
k=0 gkWn−k

= en .
(5.7)

The latter is an ARMA(p,p) process in which the AR and MA components

are identical. The signal en in equation (5.7) designates the non-white in-

novation sequence
∑p

k=0 gkWn−k.

5.1.2 AR FX Filters

Rather than trying to solve the ARMA equations one can replace the ARMA

model by a long AR (autoreregressive) model:

Yn − f1Yn−1 + f2Yn−2 . . .+ fpYn−p = Wn . (5.8)

Where fk are the coefficients of the AR(p). The parameter p is the order

of the model, which in this case should be large enough to represent the

original ARMA model. This kind of model has been extensively studied

in the spectral analysis enviroment and in regression analysis. The deter-

mination of p is not an easy task, and demands some statistical criterion.

Akaike (1974) proposed a criterion for order selection, the AIC (Automatic

infromation criterion also known as Akaike information criterion).

The last eqaution can be writen in matrix form as follows (assume p = 3),
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



y1 0 0
y2 y1 0
y3 y2 y1

y4 y3 y2

0 y4 y3

0 0 y4








f1

f2

f3



 −





y2

y3

y4

0
0




=





w2

w3

w4

0
0




. (5.9)

We wave already seen a similar equation in the previous chapter when we

analysze inverse filters. This is a convolution matrix.

Last equation can be written as

Yf − d = w (5.10)

The least squares filter f is computed by minimizing the power of the inno-

vation w, in this case our cost or objective funcion is given by:

J = ||Y f − d||2 . (5.11)

Taking derivatives of the cost function with respect and equating the result

to zero leads to

YH Y f = YH d (5.12)

Note that the matrix YH Y is a Toeplitz form which can be efficiently solved

using Levinson’s recursion. Then, the estimated filter f̂ is given by

f̂ = (YH Y)−1 YH d . (5.13)

Once the filter has been estimated we apply it to the data vector d to obtain

the “clean” data vector d̂

d̂ = Y f̂ . (5.14)

The estimate d̂ is the predicted data, the predicted noise sequence is given

by:
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ŵ = d̂ − d . (5.15)

In general we need to regulirize the filter by adding a small perutbation to

the diagonal of the Toeplitz matrix,

f̂ = (YH Y + µI)−1 YH d . (5.16)

5.1.3 Data resolution matrix

We will analyze the performance of the filter by means of the Singular Value

Decompistion (SVD) of the matrix. We will first consider the system given

by Y f = d and the SVD decompostion of the convolution matrix Y

Y = UΣVH , (5.17)

where U and V are matrices containing the eigenvectors of Y YH and

YH Y, respectively. The diagonal form Σ is the matrix of singular values.

U and V are othogonal matrices of eigenvectors and therefore the satisfiy

the following equations:

UH U = I , VH V = I . (5.18)

The SVD solution to Y f = d is given by

f̂ = (YH Y)−1YH d (5.19)

= VΣ2 YH UΣVH d .

The predicted data d̂ can be written as follows:

d̂ = Y d (5.20)

= UUH d .
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The operator UUH is called the Data Resolution Matrix. The data resoltion

matrix gives and input/output relatioship for our signal-to-noise-ratio en-

hancement problem.

We will come back to similar concepts when we look at the signa-to-noise-

enhancement problems by means of the KL transform.

5.1.4 The convolution matrix

We have adopted a very simple convolution matrix in order to design our

filter via the Levinson’s recursion. But bear in ming that other data matrices

can be used to estimate the data prediction filter.

Canales (1984) original formulation uses the following model





y1 0 0
y2 y1 0
y3 y2 y1

y4 y3 y2

0 y4 y3

0 0 y4








f1

f2

f3



 =





y2

y3

y4

0
0




. (5.21)

Ulrych and Clayton (1976) proposed the transiient-free convolution matrix.

This is matrix where zero extensioned is avoided. In our simple example

(p = 3) the transient-free matrix formulation is given by





y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4








f1

f2

f3



 =





y4

y5

y6

y7



 . (5.22)

The solution of the above system gives a filter free of truncation errors.

However, the martic YH Y is not longer a Toepiltz form.

It is important to mention that the above analysis only involved forward pre-

diction filters. In other words we are trying to predict the fututre samples

of signal based upon past values the signal. A more sophyisticated schemme

involves the simultaneous minimization of a forward and a backward pre-

diction error. In this case, one can show that the system of equations in the
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transient-free case) has the following aspect (we assume a filter of lenght p

and a signal composed of N samples)





yp . . . y1

. . . . .

. . . . .

. . . . .
yN−1 . . . yN−p

y∗2 . . . y∗p+1

. . . . .

. . . . .

. . . . .
y∗N−p+1 . . . .y∗N









f1

f2

.

.

.
fp





=





yp+1

.

.

.
yN

y∗1
.
.
.

y∗N−p





. (5.23)

5.1.5 Examples

In Figures 5.1 and 5.2 two synthetic simulatations where we examine the

predictiviliy of a single ahrmonic component in the time or spcae domian.

Two dimensional sumulations are displayed in Figures 5.3 and 5.4.

The algorithm to peform the FX noise attenuation is summirized as follows:

1. transform the data into the FX domain

Data(t, x) → Data(f, x)

2. for each frequecy f solve the AR prediction problem ourline in the

precedoing section to estimate the AR prediction filter.

3. Apply the filter to the data (convolution of the filter witht the data).

4. Transform back to TX

Data(f, x) → Data(t, x)

5. end
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Figure 5.1: Prediction of a single harmonic (no noise) using AR filters
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Figure 5.2: Prediction of a single harmonic (σnoise = 0.2) using AR filters
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Figure 5.3: FX filtering of a single linear event inmersed in noise
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Figure 5.4: FX filtering of a single linear hyperbolic event inmersed in noise
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5.1.6 Non-linear events: Chirps in f − x ?

What happends when we do not have linear events and, therefore ARMA

models. Let’s study the problem of finding a recursion for a single event

with parabolic moveout:

s(t, x) = a(t) ∗ δ(t+ qx2) . (5.24)

In f − x we can write

Sn = A exp(βn2) (5.25)

where the parameter β = 2πfq∆x2 is the coefficient of the chirped signal.

In this case a simple recursion via a difference equation is not possible, yet

we can combine Sn Sn−1 and Sn−2 to obtain the following recursive relation

Sn =
bS2

n−1

Sn−2
(5.26)

The non-linearity is evident. This type of signals cannot be optimally mod-

elled via ARMA or AR models. So far, we have been unable to find a

recursion (non-linear) in the f − x domain for a superposition of parabolic

events immersed in white noise.

5.1.7 Gap filling and recovery of near offset traces

The recovery of near offset traces is an important aspect in many proce-

dures associated with seismic data processing. Prediction of missing traces

in the frequency-offset domain depends on the assumption of linear move-

out. When the signal exhibits non-linear moveout the f − x domain is no

longer composed of a finite set of harmonics, but is in fact, composed of

a superposition of “chirped” signals, which makes conventional autoregres-

sive prediction a suboptimal solution. Specifically, for a single signal with

parabolic moveout a non-linear recursion would be required. The latter is

a very simple scenario, yet it provides an interesting framework to analyse

the complexity of the problem.

We have developed a gap filling technique which, although based on linear

prediction ideas, has shown considerable promise in the resolution of this

difficult problem.
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This technique was first used by Wiggins and Miller (1972) for the predic-

tion of glitches in earthquake records. Subsequently, Walker and Ulrych

(1983) and Fahlman and Ulrych (1982) used this approach for band-limited

impedance recovery and prediction of astronomical data, respectively.

In this section we present a suboptimal solution to the problem of gap filling.

First, we will assume that the data in f−x can be modelled by an AR model

of length P . In principle, we will assume that the AR parameters are known.

In this case, we can turn the gap filling problem into an inverse problem.

The prediction error for the AR model in terms of the AR coefficients is

given by

En = g0Yn + g1Yn−1 + g2Yn−2 + . . . gpYn−p (5.27)

Since the gap comprises the traces Yn1
, Yn1+1, . . . Yn2

, we will minimize the

squared sum of the prediction error within the gap

n2∑

k=n1

EkEk
∗ (5.28)

Taking derivatives with respect to the samples in the gap we end up with

the following system

Rg(Yn1
Yn1+1 . . . Yn2

)T = b (5.29)

where Rg is the autocorrelation matrix of the prediction error filter and b

is a vector that depends on the data outside the gap and the PEO and is

known. The matrix Rg is of Toeplitz form, consequently a fast solver like

the Levinson recursion can be adopted.

So far we have assumed that the PEO is known. In diverse synthetic and

field data experiments we have found that a good strategy is to estimate the

PEO from consecutive traces to the left and to the right of the gap. The

PEO that is utilized in the gap filling is the average PEO. A first pass can

be used to fill the gap and a second pass, using the complete data, can be

used to recalculate the PEO and the traces within the gap.

Real data experiments are portrayed in Figures (5.6) and (5.7). In this case

we have tested the algorithm with two land data shots. It is convenient

to balance the energy of each trace to a common value before proceeding
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with the gap filling algorithm. In these examples the traces 49, 50, . . . , 56

are missing. A 15 points PEO was used and a regularization parameter

that represents 1% of the trace of the autocorrelation matrix of the PEO

was inserted to stabilize the inversion. The stabilization will minimize the

energy brought into the gap, in other words the recovered amplitudes within

the gap may have to be balanced.
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Figure 5.5: Predictivility of linear events. The AR gap filling tehcniques is
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Figure 5.6: oz01.dat Original (left), after gap filling with a PEO(3)
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Figure 5.7: oz09.dat Original (left), after gap filling with a PEO(5) and
PEO(15)
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Figure 5.8: oz11.dat Original (left), after gap filling with a PEO(5) and
PEO(15)
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5.1.8 Pre-stack surface consistent FX filters

So far we have analyzed the problem of designing a 1D predictor filter in

the FX domain for signal-to-noise-ratio enhancement. It in important to

mention that a pre-stack version of the FX deconvolution was proposed by

Xi-Shuo Wang at the CSEG convention in 1995. The idea is to perform

N-dimensional prediction filterting in order to take into account that there

is a commonality of sources, recievers, CMPs and midpoint positions in the

pre-stack data volume.

Let assume that the data can be represented as follows:

D(s, r, h,m, f) s = 1 : NS, r = 1 : NR, h = 1 : NH, m = 1 : NM

where

• s is the source index

• r is the receiver index

• h is the offset

• m is the midpoint index

• f indicates the frequency

In this case the F−SRHM filter is a 4−D operator that attemps to predict

the data in the follwoing fashion:

D̂(s, r, h,m) =
∑

i

∑

j

∑

l

∑

l

F (i, j, k, l, f)D(s − i, r − j, h− k,m− l)

The filter is derived by minimizing the following cost function

J =
∑

i,j,k,l

(D(s, r, h,m)−
∑

i

∑

j

∑

l

∑

l

F (i, j, k, l, f)D(s−i, r−j, h−k,m−l))2

The system of normal equations cannot be formed (it’s huge!!). Therefore,

a solver like Conjugate Gradients or Gauss-Seidel is needed. In this case,

the system can be inverted in the flight (without forming the matrix).
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5.2 FX Projection Filters

In this section we will study the problem of quasi-predictivity and the so-

lution via projection filters. This part of my notes are based on the work

presented by Soubaras at the SEG (1994, 1995) and EAEG (1995).

5.2.1 Wavenumber domain formulation

As we have already mentioned FX prediction is a technique proposed by

Canales (1984) to attenuate Random noise in seismic section. In small

windows, the seismic data can be approximated by a superposition of linear

events. The later gives rise to harmonic models in the FX domain. Soubaras

introduces the idea of quasi-predictibility to attenuate additive noise in the

FX domain.

We denote a signal in the FX domain as s(f, x)

s(f, x) = s0(f, x) + n(f, x)

where S0(f, x) is the noiseless signal and n(f, x) the additive noise. Let con-

sider the spatial prediction problem for a fix frequency f . In the wavenum-

ber domain equation (5.2.1) can be written as

S(k) = S0(k) +N(k)

where I have omitted f for simplicity. Let assume that S0(k) is a signal that

can be predicted using a PEO operator, A(k):

A(k)S0(k) = I(k) (5.30)

where I(k) is the prediction error (innovation term if you think in an AR

model). If A(k) is a known PE-filter we can construct the following cost

function to find the noise sequence

J = |N(k)|2 + µ|I(k)|2 (5.31)

J combines two wishes: additive noise attenuation and predictability.

J = |S(K) − S0(k)|2 + µ|A(k)S0(k)|2 (5.32)
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note that if µ = 0 we get the trivial solution N(k) = 0. and S0(k) = S(k)

where noise attenuation is not achieved.

Minimizing J (taking derivatives with respect to S0(k) and setting them to

zero yields):

S0(k) =
S(k)

1 + µA(k)A(k)∗
(5.33)

the noise term becomes

N(k) = S(k) − S0(k) =
A(k)A(k)∗

µ−1 +A(k)A(k)∗
S(k) (5.34)

equation (5.34) is Soubaras’s expression for the projection filter M(f) where

N(k) = M(k)S(k).

M(k) =
A(k)A(k)∗

µ−1 +A(k)A(k)∗
(5.35)

1. when µ =→ 0

N(k) = 0, S0(k) = S(k), I(k) = A(k)S(k)

2. when µ =→ ∞

N(k) = S(k), S0(k) = 0., I(k) = 0.

All intermediate cases, µ ∈ [0,∞), corresponds to quasi-predictability (trade-

off between additive noise attenuation and predictability of signal).

5.2.2 Space domain formulation

Soubaras also derived space domain expression for the projection filter (small

bolds are vectors, capital bolds denote matrices),

s = s0 + n (5.36)

As0 = i . (5.37)
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In this case the vectors denote the spatial series of observations s and the

unknowns s0 and n. The operation As0 also corresponds to convolution

with the PEO. The cost function for the problem becomes:

J = (s− s0)T (s − s0) + µs0
TATAs0 (5.38)

taking derivatives yields to

s = (I + µATA)s0 (5.39)

since s = s0 + n

s = (I + µATA)(s + n) (5.40)

n = µ(I + µATA)−1ATAs (5.41)

where after using the identity AT (I + µAAT )−1 = (I + µAAT )−1AT ,

n = AT (µ−1I + AAT )−1As . (5.42)

The projection filter deconvolves the PEO filter. To prove this assessment

suppose that we know the filter A. Unfortunately is not true that we know

the s0, but suppose that we apply the filter to s

As = A(s0 + n) = As0 + An . (5.43)

It is clear from the last expression that the filter output has two compo-

nents, the innovation, As0, which is zero if the noiseless signal is perfectible

predictable plus the filtered noise sequence An. If one looks carefully at

equation (5.42) it is clear that the projection filter does the deconvolution

of the PEO signature from the noise sequence,

n = AT (µ−1I + AAT )−1

︸ ︷︷ ︸
2

(As)
︸ ︷︷ ︸

1

(5.44)

The operation 1 does the filtering of the signal and the noise, meanwhile the

operation 2 removes the colour that the filter has introduced into the noise

(deconvolution of the PEO).
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The term denoted 2 in expression (5.44) is also the pseudo-inverse of the

PEO filter A, which I will define A+.

5.2.3 Wrong formulation of the problem

Suppose, again, that we know the PEO filter. The PEO when applied to

the noise data does the following

As = A(s0 + n) = As0︸︷︷︸
1

+ An︸︷︷︸
2

. (5.45)

It is evident that we want the term denote 1 to be small (predictability)

and the term denote 2 to be small too!! (noise attenuation). We can try to

conciliate both wishes by defining the following objective function:

J = s0A
T As + µ(s − s0)T ATA(s − s0) (5.46)

taking derivatives with respect to s0 yields

s0 =
µ

1 + µ
s (5.47)

Ooohps, it is clear that there is something wrong with equation (5.47). This

is a consequence of written an incorrect objective function. In fact, what

we want to minimize is the term denote 1 in equation (5.45) plus the actual

noise term n = s − s0 and not the the filtered noise An. So it is clear that

the proper objective function of the problem is given by equation (14) and

not by equation (5.46).

Soubaras’s projection filter is an attempt to estimate from a given PEO an

optimum noise sequence. Or in other words, the projection filter is the solu-

tion of a inverse problem where an unfiltered noise sequence is the unknown.

5.3 ARMA formulation of Projection filters

It is important to note that undelying signal model in f −X is an ARMA

model. So far, we have done prediction and noise removal using two con-

cepts: 1- Conventing the ARMA problem into an AR problem and per-

forming conventional linear prediction (Canales’ method) and 2- Invoke the
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concept of quasi-predictability and solve a problem where both PEF and

the additive noise are unknowns (Soubaras’ mnethod)

One of the problems of AR filtering (Canales’ method) is that the noise

enters into the probblem as a innovation rather than as additive noise.

Soubaras volved this problem by introducing the theory of projection fil-

ters. In this section of the course we will show that projection filters can be

computed by solving the original ARMA problem without introducing the

concept of quas-predictability.

Let’s go back to the orginal system of equation for our ARMA problem

(equation (5.7)):

∑p
k=0 gkYn−k =

∑p
k=0 gkWn−k

= en .
(5.48)

we have mentioned that the latter is an ARMA(p,p) process in which the

AR and MA components are identical. The signal en in equation designates

the non-white innovation sequence
∑p

k=0 gkWn−k.

The problem now can be summarized as follows, given the ARMA represen-

tation of the noise signal:

1. How do we estimate the prediction error filter gk?

2. How do we use gk to estimate the additive noise sequence Wk.?

This two fundamental points are discussed in the following pages.

5.3.1 Estimation of the ARMA prediction error filter

Equation (5.7) can be written in matrix form as follows:

Yg = Wg
= e ,

(5.49)

where Y is the convolution matrix of the signal with entries given by the

noisy sequence Yk properly shifted and padded with zeros in order to rep-

resent discrete convolution. For a signal of length N = 4 samples and a

prediction error filter of length 3 (p = 2) the convolution matrix takes the

following form:
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Y =





Y0 0 0
Y1 Y0 0
Y2 Y1 Y0

Y3 Y2 Y1

0 Y3 Y2

0 0 Y3





. (5.50)

It is important to stress that the transient-free convolution matrix proposed

by Ulrych and Clayton (1976) can also be adopted (Harris and White, 1997;

Wang, 1999). The matrix W in equation (5.49) is the convolution matrix

of the noise with entries given by the unknown noise sequence Wk.

If we assume that the noise is spatially uncorrelated and stationary, the

prediction error filter g can be estimated by transforming equation (5.49)

into an eigenvalue problem. For this purpose we first multiply both sides of

equation (5.49) by YH (the Hermitian transpose of the matrix Y) and after

considering that noise and signal are spatially uncorrelated we arrive to the

following expression

RY g = PW g . (5.51)

The matrix RY = YHY is the Toeplitz correlation matrix of the noisy data.

The scalar PW represents the noise power.

The matrix RY is positive definite with p + 1 eigenvalues and eigenvectors

(Marple, 1987). Equation (5.51) admits p + 1 solutions. Each solution

corresponds to an eigenvector and its associated eigenvalue. Let us assume

the that i -th eigenvector is the solution of our problem, g = vi. In this case

the power of the colored noise sequence e can be written as

eHe = vH
i RY vi

= PW vH
i vi

= λi ,
(5.52)

it is clear that since the eigenvectors are normalized λi = PW . In other words

the eigenvector corresponding to the minimum eigenvalue minimizes the

power of the additive white noise. If the eigenvalues are sorted in descendent

order our final estimator of the prediction error filter is given by g = vp+1

and the minimum eigenvalue λp+1 gives an estimate of the noise power. The
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other eigenvectors provide a solution that corresponds to local minima of

the quadratic form eHe.

Equation (5.5.1) is the basis of the Pisarenko Harmonic Decomposition

(PHD) (Pisarenko, 1973). In the PHD the frequencies or wavenumbers are

determined by factoring the z-transform of the prediction error filter. The

roots of the prediction error filter are guaranteed to lie on the unit circle

(Marple, 1987).

5.3.2 Noise estimation

After estimating g the remaining problem is to estimate the noise sequence

Ŵk which will be used to estimate the “clean” signal Ŝk = Yk−Ŵk. The noise

is estimated by deconvolving the prediction error filter from the non-white

innovation in equation (5.49). In order to facilitate the algebra we rewrite

equation (5.49) by commuting the sequences involved in the convolution

Gy = Gw . (5.53)

The matrix G is the convolution matrix of the prediction error filter, y

and w are vectors containing the observations and the white noise sequence,

respectively. We must stress that after computing the prediction error filter,

the right hand side term in equation (5.53) is known. This equation admits

a trivial solution of the form ŵ = y. This solution implies that the signal

s = 0. This shortcoming is avoided by solving a constrained minimization

problem. We minimize the following quadratic form

J = [G(y − w)]H [G(y − w)] (5.54)

subject to

wHw = Pw . (5.55)

The constrained minimization problem is solved by introducing a Lagrange

multiplier to combine the last two equations into a new objective function

J ′ = [G(y − w)]H [G(y − w)] + µ(wHw − PW ) . (5.56)
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The objective function J ′ is minimized by the following estimator of the

noise sequence

ŵ = (GHG + µI)−1GHGy . (5.57)

The “clean signal”, ŝ = y − ŵ, can be estimated as follows:

ŝ = [I − (GHG + µI)−1GHG]y . (5.58)

At this stage some comments are in order. First, we note that when µ = 0,

ŵ = y. In other words, we have annihilated the signal (ŝ = 0). If µ is too

large, ŵ = 0. In this case there is no noise attenuation (ŝ = y). This is

also the case of perfect predictability in the absence of noise where equation

(5.53) becomes Gs = 0.

In general, a line search procedure could be used to determine the value of

µ that yields a noise sequence with a mean square error that agrees with the

estimated noise power obtained after solving equation (5.51). In practical

applications the parameter µ is determined by assessing the quality of the

final results in the same way as it is done in seismic deconvolution.

5.3.3 ARMA and Projection Filters

Our algorithm is composed of two stages: 1) determination of the predic-

tion error filter or eigenfilter and 2) noise estimation. Stage 2 is equiv-

alent to the projection filtering technique proposed by Soubaras (1994,

1995). In Soubaras’ technique the noise is estimated by minimizing an objec-

tive function that establishes a tradeoff between predictability (or pseudo-

predictability) and random noise attenuation. Soubaras first assumes that

the prediction error filter is known and then uses the objective function J ′

(equation (5.56)) to determine the noise sequence. The first term of J ′ is

associated to signal predictability, the second term is associated to random

noise attenuation. In the projection filter approach the prediction error filter

is bootstrapped from the data in an iterative manner.

It is clear that the ARMA representation of the seismic signal in the f − x

domain leads not only to a technique to estimate the prediction error filter

but also to the projection filter estimator of the noise sequence.
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In Figure (5.9) we present a 1D synthetic example. The signal is composed

of one real sinusoid immersed in white noise with standard error σ = 0.5.

The number of signals is p = 2 (1 real sinusoid is represented by 2 complex

harmonics). We have estimated the noise sequence using different tradeoff

parameters (Figure (5.10)). In Figure (5.11) we portrayed the estimated sig-

nal versus the tradeoff µ. The optimum tradeoff parameter is µ = 0.01. This

value yields a noise sequence with variance σ̂ = 0.53. In Figure (5.12) we

portray the transfer function of the projection filter utilized in the example.

The wavenumber response of the projection filter is given by

A(k) =
|g(k)|2

µ+ |g(k)|2 , (5.59)

where g(k) is the Fourier transform of the eigenfilter. In this example the

eigenfilter has a root on the unit circle at k0 = 0.05, therefore equation (5.59)

represents a notch filter that eliminates that particular spectral component.

When the proper value of µ is chosen, the transfer function A(k) selectively

attenuates the signal letting only the noise pass. It is clear that when µ is

increased the transfer function will attenuate both signal and noise.

In Figures (5.13) and (5.14) we compare the performance of Canales’ f − x

AR filtering using a 15 points prediction error filter and the f − x ARMA

approach using a 4 points eigenfilter (p = 3). These results look quite

similar. However, one can observe that in the AR formulation a portion of

the signal leaks into the noise space.

In Figure (5.15) we provide a field data example. We have used the ARMA

approach and the AR f −x filtering approach to attenuate random noise in

a common offset gather section. The two methods produce similar results.

In the ARMA method we have adopted a filter of length 3 (p = 2) and

a tradeoff parameter µ = 0.1. The AR filtered panel was obtained using

a forward/backward prediction error filter of length p = 15. These results

look quite similar, it is clear that in real data applications both models (AR

and ARMA) do not properly represent the true underlying signal and this

is the major source of errors in both techniques.
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Figure 5.9: D synthetic example. A sinusoid of normalized wavenumber
k0 = 0.05 is used to test the ARMA filtering method described in the paper.
The data are contaminated with white noise with standard error σ = 0.5.
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Figure 5.10: The eigenfilter estimated from the noisy data is used to estimate
the noise. In this figure we portray the estimator of the noise sequence versus
the tradeoff parameter µ. Large values of µ will completely annihilate the
noise. Small values of µ will overestimate the noise (the signal leaks into the
noise sequence.)
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Figure 5.11: Estimator of the signal versus the tradeoff parameter µ. Note
that for µ = 0.01 the signal is recovered.



5.3. ARMA FORMULATION OF PROJECTION FILTERS 191

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−120

−100

−80

−60

−40

−20

0

µ=10000

µ=100

µ=1

µ=0.01

µ=0.0001

Normalized wavenumber

A
m

pl
itu

de
 S

pe
ct

ru
m

 [d
B

]

Figure 5.12: Amplitude response of the projection filter utilized to estimat
e the noise in Figure 1b. Note that large values of µ attenuates both signal
and noise. On the other h and, small value of µ does not properly attenuate
the signal.
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Figure 5.13: Left: The original data (3 waveforms immersed in spatially
uncorrelated noise). Center: Filtered data using the ARMA representation.
Right: Estimate of the noise.
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Figure 5.14: Left: The original data (3 waveforms immerse in spatially
unco rrelated noise). Center: Filtered data using the AR representation
(Conventional f − x r andom noise attenuation). Right: Estimate of the
noise.
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Figure 5.15: Left: A window of a common offset gather. Center: The filtered
section using the ARMA representation with a 3 points eigenfilter (p = 2).
Right: Conventional f − x random noise attenuation (p = 15).
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5.4 FX Processing Codes

5.4.1 Prediction of harmonic models using AR filters

Program used to obtain Figures (5.1) and (5.2)

% A program for linear prediction of

% harmonic models, 1D example.

% First we prepara a synthetic

dt = 4./1000.; nt =290;

t = 0:dt:(nt-1)*dt;

f = 10;

lf =20;

% Prepare a noise signal

D_in = cos(2*pi*f*t)’ + 0.2*randn(nt,1);

D_pred = zeros(nt,1);

C = convmtx(D_in,lf);

d = zeros(nt+lf-1,1); d(1:nt-1) =D_in(2:nt);

% Compute the pef

mu = .001;

f = inv(C’*C+mu*eye(lf))* C’*d;

aux = conv(f,D_in);

% Forward prediction

D_pred(2:nt,1) = aux(1:nt-1);

% Prediction error

E = D_in - D_pred;
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5.4.2 FX algorithm, Canales (1984)

Program used to prepare Figures (5.3) and (5.4)

% FX.m

% Canales method for SNR enhancement.

% needs function ar.m to compute the predicted

% at a given frequency

clear; clf

dt = 4./1000; % Make a synthetic t-x model

w = ricker(20.,dt);

nw=max(size(w));

nx = 32; nt = 128;

DATA = zeros(nx,nt);

for i=1:nx

for j=1:nw

DATA(i,20+j+i) = w(j);

end

end

NOISE = 0.2 * randn(nx,nt); % Add noise to data

DATA = DATA + NOISE;

p = 20 % Length of the pef

DATA_FX = fft(DATA,[],2); % Go to f-x

for i=1:nt; % Do prediction at each freq

aux_in = DATA_FX(:,i);

aux_out = ar(aux_in,p);

DATA_FX(:,i) = aux_out;

end

DATA = real(ifft(DATA_FX,[],2)); % Back to t-x
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subplot(211);wigb(DATA’);

title(’Input, \sigma_n=0.2’)

subplot(212);wigb(DATA’);

title(’Output after FX filtering, p=20’)

5.4.3 Linear prediction using AR filters

Function to perform 1D prediction.

function [D_pred] = ar(D_in,lf);

% 1D prediction function used by Canales’ method.

%

% D_in: Data in f-x (one column at freq. f)

% lf: length of the pef (AR)

% D_pred: predicted data (clean data)

%

n = max(size(D_in));

D_pred = zeros(n,1);

C = convmtx(D_in,lf); % convolution matrix

d = zeros(n+lf-1,1); % RHS vector (desired output)

d(1:n-1) =D_in(2:n);

mu = .001;

f = inv(C’*C+mu*eye(lf))* C’*d; % Filter (AR)

aux = conv(f,D_in); % apply filter to data

D_pred(2:n,1) = aux(1:n-1); % Prediction

return
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5.4.4 ARMA filtering

Program used to generate Figures (5.10), (5.11), and (5.12).

function [s,w,g] = eigen_filtering(y,p,mu);

% Given a 1D noisy sequence y, the order p of

% the ARMA(p,p) model and the regularization parameter mu

% this function computes the clean signal s, an estimate of

% the noise sequence w, and the prediction error filter g.

N = length(y);

Y = convmtx(y,p+1); % data convolution matrix

R = Y’*Y/N; % data correlation matrix

[g,Pw] = eigs(R,1,’SM’); % compute 1 eigenvalue (the SMallest)

% and the associated eigenvector

g0 = g(1);

g = g/g0;

e = Y*g; % non-white sequence e

G = convmtx(g,N); % convolution matrix of the filter

D = eye(N)*mu; % regularization term

w = inv(G’*G+D)*G’*e; % estimate of the noise

s = y-w; % estimate of the clean signal

return



5.4. FX PROCESSING CODES 199

5.4.5 References

Akaike, H., 1974, A new look at statistical model information, IEEE Trans.

Auto. Control, AC-19, 716-723.

Canales, L. , 1984, Randon noise reduction: 54th Annual SEG Meeting,

p.525-527.

Fahlman, G. G., and Ulrych, T. J., 1982, A new method of estimating the

power spectrum of gapped data: Mon. Not. Roy. Astr. Soc., v.199, p.53-

65.

Harris, P. E., and White, R. E., 1997. Improving performance of f − x

prediction filtering at low signal-to-noise ratios: Geophysical Prospecting,

45, 269-302.

Marple, S. L., 1987. Digital Spectral Analysis. Prentice-Hall, Inc.

Pisarenko, V.P, 1973. The retrieval of harmonics from a covariance function.

Geophys. J. R. astr. Soc., 33: 347-366.

Sacchi M.D., and Kuehl, H., 2001, ARMA formulation of fx Prediction error

filters and projection filters: Journal of Seismic Exploration, 9, 185-197.

Soubaras R., 1994, Signal preserving random noise attenuation by the f-x

projection: 64 Annual SEG Mtg. 1576-1579

Soubaras R., 1995, Prestack random and impulsive noise attenuation bt f-x

projection filtering: 65 Annual SEG Mtg. 711-714

Soubaras R., 1995, Deterministical and statistical noise attenuation: 57th

EAEG Mtg.

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics,

56, 785-794.

Ulrych, T. J., and Clayton, R. W., 1976, Time series modeling and maximum

entropy: Phys. of the Earth and Plan. Int., 12, 188-200.

Walker, C., and Ulrych, T. J., 1983, Autoregressive recovery of the acoustic

impedance: Geophysics, 48, 1338-1350.

Wang, Xi-Shuo, 1995, Random noise attenuation of pre-stack data by surface

consistent prediction in the frequency domain: CSEG National Convention,

Calgary, Expanded Abstracts, 133-134.

Wang, Y., 1999. Random noise attenuation using forward-backward linear

prediction. Journal of Seismic Exploration, 8: 133-142.

Wiggins, R. A, and Miller, S. P., 1972, New noise-reduction technique ap-



200 CHAPTER 5. SIGNAL-TO-NOISE-RATIO ENHANCEMENT

plied to long-period oscillations from the Alaskan earthquake: SSA Bull.,

62, 417-479.



Chapter 6

The KL transform and
eigenimages

In this chapter we will discuss another technique to improve the information

content of seismic data. The application of eigenimage analysis in seismol-

ogy was proposed by Hemon and Mace (1978). In their approach they use

a particular linear transformation called the Karhunen-Loeè (KL) transfor-

mation. The KL trnsormation is also knows as the principal component

transformation, the eigenvector transfomation or the Hotelling transofma-

tion. Of particular relevance to the ensuing discussion is the excellent paper

by Ready and Vintz (1973) which deals with information extraction and

SNR improvement in multispectral imagery.

In 1983, the work of Hemon and Mace was extended by a group of researchers

at the University of British Columbia in Canada which culminated in the

work of Jones and Levy (1987).

In 1988 Freire and Ulrych applied the KL transformation in a somewhat

different manner to the processing of vertical seismic profiling data. The

actual approach which was adopted in this work was by means of singu-

lar value decomposition (SVD), which is another way of viewing the KL

transformation (the relationship between the KL and SVD transformations

is discussed in this chapter).

A seismic section which consists of M traces with N points per trace may

be viewed as a data matrix X where each element xij represents the ith

point of the jth trace. A singular value decomposition (Lanczos, 1961),

201
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decomposes X into a weighted sum of orthogonal rank one matrices which

have been designated by Andrews and Hunt (1977) as eigenimages of X. A

particularly useful aspect of the eigenimage decomposition is its application

in the complex form. In this instance, if each trace is transformed into the

analytic form, then the eigenimage processing of the complex data matrix

allows both time and phase shifts to be considered which is of particular

importance in the case of the correction of residual statics.

6.1 Mathematical framework

We consider the data matrix X to be composed of M traces with N data

points per trace, the M traces forming the rows of X. The SVD of X is

given by, (Lanczos (1961)),

X =
r∑

i=1

σiuiv
T
i . (6.1)

where T indicates transpose, r is the rank of X, ui is the ith eigenvector

of XXT, vi is the ith eigenvector of XTX and σi is the ith singular value

of X. The singular values σi can be shown to be the positive square roots

of the eigenvalues of the matrices XXT and XTX. These eigenvalues are

always positive owing to the positive definite nature of the matrices XXT

and XTX. In matrix form equation (6.1) is written as

X = UΣVT (6.2)

Andrews and Hunt (1977) designate the outer dot product uiv
T
i as the ith

eigenimage of the matrix X. Owing to the orthonormality of the eigen-

vectors, the eigenimages form an orthonormal basis which may be used to

reconstruct X according to equation (6.1).

Suppose, for example, that X represents a seismic section and that all M

traces are linearly independent. In this case X is of full rank M , all the

σi are different from zero and a perfect reconstruction of X requires all

eigenimages. On the other hand, in the case where all M traces are equal
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to within a scale factor, all traces are linearly dependent, X is of rank one

and may be perfectly reconstructed by the first eigenimage σ1u1v
T
1 . In the

general case, depending on the linear dependence which exists among the

traces, X may be reconstructed from only the first few eigenimages. In this

case, the data may be considered to be composed of traces which show a high

degree of trace-to-trace correlation. Indeed, XXT is, of course, a weighted

estimate of the zero lag covariance matrix of the data X and the structure

of this covariance matrix, particularly the distribution of the magnitudes

of the corresponding eigenvalues, indicates the parsimony or otherwise of

the eigenimage decomposition. If only p, p < r, eigenimages are used to

approximate X, a reconstruction error ǫ is given by

ǫ =
r∑

k=p+1

σ2
k . (6.3)

Freire and Ulrych (1988) defined band-pass XBP, low-pass XLP and high-

pass XHP eigenimages in terms of the ranges of singular values used. The

band-pass image is reconstructed by rejecting highly correlated as well as

highly uncorrelated traces and is given by

XBP =
q∑

i=p

σiuiv
T
i , 1 < p ≤ q < r . (6.4)

The summation for XLP is from i = 1 to p− 1 and for XHP from i = q + 1

to r. It may be simply shown that the percentage of the energy which is

contained in a reconstructed image XBP is given by E, where

E =

∑q
i=p σ

2
i∑r

i=1 σ
2
i

. (6.5)

The choice of p and q depends on the relative magnitudes of the singular

values, which are a function of the input data. These parameters may, in

general, be estimated from a plot of the eigenavalues λi = σ2
i as a function

of the index i. In certain cases, an abrupt change in the eigenvalues is easily

recognised. In other cases, the change in eigenvalue magnitude is more
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Figure 6.1: A flat event immersed in nose and the recostruction by means
of the first eigenimage

gradual and care must be exercised in the choice of the appropriate index

values.

In Figures 6.1 and 6.2 we illustrate the reconstruction fo a flat event im-

mersed in noise using the first eigenimage of the data. In this example only

the most energetic singular value was retained. When the data exhibit some

type of moveout, one eigenimage is not sufficient to properly reconstruct the

data. This can be observed in Figures 6.3 and 6.4.

As we have seen, decomposition of an image X into eigenimages is performed

by means of the SVD of X. Many authors also refer to this decomposition

as the Karhunen-Loève or KL transformation. We believe however, that the

SVD and KL approaches are not equivalent theoretically for image process-

ing and, in order to avoid confusion, we suggest the adoption of the term

eigenimage processing. Some clarification is in order.

A wide sense stationary process ξ(t) allows the expansion
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Figure 6.2: Spectrum of singular values for the data in Figure 6.1.

ξ̂(t) =
∞∑

n=1

cnψn(t) 0 < t < T (6.6)

where ψn(t) is a set of orthonormal functions in the interval (0, T ) and the

coefficients cn are random variables. The Fourier series is a special case of

the expansion given by equation (6.6) and it can be shown that, in this case,

ξ(t) = ξ̂(t) for every t and the coefficients cn are uncorrelated only when ξ(t)

is mean squared periodic. Otherwise, ξ(t) = ξ̂(t) only for |t| < T/2 and the

coefficients cn are no longer uncorrelated. In order to guarantee that the cn

are uncorrelated and that ξ(t) = ξ̂(t) for every t without the requirement of

mean squared periodicity, it turns out that the ψn(t) must be determined

from the solution of the integral equation

∫ T

0
R(t1, t2)ψ(t2)dt2 = λψ(t1) 0 < t1 < T (6.7)
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Figure 6.3: A Parabolic event immersed in nose and the reconstruction by
means of the 1,2 and 3 eigenimages

where R(t1, t2) is the autocovariance of the process ξ(t).

Substituting the eigenvectors which are the solutions of equation (6.7) into

equation (6.6) gives the KL expansion of ξ(t). An infinite number of basis

functions is required to form a complete set. For a N × 1 random vector x

we may write equation (6.6) in terms of a linear combination of orthonormal

basis vectors wi = (wi1, wi2, . . . , wiN )T as

xk =
N∑

i=1

yiwik k = 1, 2, . . . , N (6.8)

which is equivalent to

x = Wy (6.9)
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Figure 6.4: Spectrum of singular values for the data in Figure 6.3.

where W = (w1,w2, . . . ,wN). Now only N basis vectors are required for

completeness. The KL transformation or, as it is also often called, the KL

transformation to principal components, is obtained as

y = WTx (6.10)

where W is determined from the covariance matrix Cx of the process

Cx = WΛWT (6.11)

Let us now turn our attention to the problem of the KL transformation

for multivariate statistical analysis. In this case we consider M vectors

xi, i = 1,M arranged in a M × N data matrix X. The M rows of the

data matrix are viewed as M realizations of the stochastic process x and

consequently the assumption is that all rows have the same row covariance
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matrix Cr. The KL transform now becomes

Y = WTX (6.12)

An unbiased estimate of the row covariance matrix is given by

Ĉr =
1

M − 1

M∑

i=1

xix
T
i (6.13)

assuming a zero mean process for convenience. Since the factor M − 1

does not influence the eigenvectors, we can see from equation (12) and the

definition of U that W = U. Consequently, we can rewrite equation (11) as

Y = UTX (6.14)

Substituting equation (6.1) into equation (6.14), we obtain

Y = UT UΣVT = ΣVT (6.15)

The principal components contained in the matrix Y may be viewed as the

inner product of the eigenvectors of XXT with the data, or as the weighted

eigenvectors of XTX.

Since X may be reconstructed from the principal component matrix Y by

the inverse KL transformation

X = UY (6.16)

we may combine last two equations to obtain

X = UΣYT (6.17)

Last equation is identical with equation (6.1), showing that, providing we

are considering a multivariate stochastic process, the SVD and the KL trans-

formation are computationally equivalent.
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6.2 Eigenimage analysis of common offset sections

We investigate the application of eigenimage analysis to common offset sec-

tions. Our principal goal is to show that often, common offset sections can

be efficiently compressed using eigenimages. A subsidiary goal is to improve

the S/N ratio of pre-stack data by eigenimage filtering of common offset

sections.

We consider the data matrix X to be composed of nx traces with nt data

points per trace, the nx traces forming the columns of X. The Singular

Value Decomposition (SVD) of X (Lanczos, 1961), is given by:

X =
r∑

i=1

λi ui v
T
i , (6.18)

where r indicates the rank of the matrix X, ui is the i-th eigenvector of

XXT , vi is the i−th eigenvector of XT X and λi is the i-th singular values

of X. Andrew and Hunt (1977) called the outer product ui v
T
i the i-th

eigenimage of the matrix X.

Suppose that X represents a seismic section and that all the nx traces are

linearly independent. In this case the matrix X is of full rank and all

the singular values are different from zero. A perfect reconstruction of X

requires all eigenimages. On the other hand, in the case where all nx traces

are equal to within a scale factor, all traces are linearly dependent, X is of

rank one and may be perfectly recovered by the first eigenimage, λ1u1 v
T
1 .

The eigenimage decomposition can be used to optimally extract laterally co-

herent waveforms. In general, common offset sections exhibit a good lateral

coherence. Our approach in this paper is to first decompose the pre-stack

data cube into common offset sections and then apply eigenimage analysis

to compress each common offset section and improve the S/N ratio.

Our strategy is summarized as follows:

1. The pre-stack data cube is decomposed into common offset sections,

in our examples we construct 10 common offset sections containing

traces with offsets indicated in Table 1.

2. Each common offset section is decomposed into eigenimages. 3- Only

the eigenvectors that correspond to the first p singular values are kept.
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3. Equation (6.18) is used to reconstruct the common offset section. If

the misfit is acceptable, we save the vectors ui, vi, λi, i = 1 . . . p.

It is interesting to note that the amount of data compression that can be

achieved using this procedure is remarkably high. Using the SVD we can

represent each common offset section by n2 floats:

n2 = p× nt + p× nx + p .

We define the compression ratio as follows

C = (n1 − n2)/n2,

where n1 = nx × nt is the total number of floats required to represent the

common offset section, X.

In Table 1 we summarize the compression ratio for the ten common offset

sections in which we have decomposed the data cube. In this example p

corresponds to the number of singular values that account for 30% of the

total power encountered in the spectrum of singular values. In Figure 6.51 we

portray the spectra of singular values. We note that the eigen-decomposition

is in terms of a few energetic singular values that correspond to coherent

events in the common offset domain.

COS# Offset [m] p C = (n1 − n2) /n2

1 0-221 9 13.7
2 221-427 6 20.0
3 427-633 4 18.7
4 633-839 5 17.8
5 839-1045 4 23.7
6 1045-1250 5 21.2
7 1250-1456 6 18.2
8 1456-1662 6 14.4
9 1662-1868 6 15.2
10 1868-2780 7 13.0

Table 6.1: Compression ratios for 10 common offset sections. The variable
p indicates the number of singular values used in the eigen-decomposition.
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In Figures 6.6 and 6.7 we display the common offset section #2 after and

before eigenimage filtering. Since the evenst are fairly flat, we can always

retain the information content of the section in a few eigenimages. compres-

sion and S/N ratio enhancement

In Figures 6.8 and 6.9 we display a CDP after and before performing the

eigenimage analysis in common offset domian. It is clear that we cannot use

eigenimages in the CDP domain, but after filtering in the common offset

domain an sorting in CDPs we note that some high frequency noise at near

offset traces was eliminated.

In summary, by sorting the data into common offset section we have been

able to apply the eigenimage analysis on individual common offset traces.

The pre-stack volume is reconstructing with a minimal distortion.
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Figure 6.5: Spectra of singular values for the 10 common offset sections used
to test the algorithm.
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Figure 6.7: Common offset section #2 after eigenimage filtering
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Figure 6.9: CDP after Eigenimage filtering in the common offset domain
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6.2.1 Eigenimages and application to Velocity Analysis

Eigen-decomposition of seismic data (hyperbolic windows in CMP gathers)

can be used to design coherence measures for high resolution velocity anal-

ysis. The idea is to replace the semblance measure by a norm that is a

function of the eigenvalues of the covariance matrix of the gate of analysis.

In this section we will derive a very simple algorithm that can be used to

compute high resolution coherence measures for velocity analysis.

Techniques that exploit the eigen-structure of the covariance matrix have

been borrowed from the field of array processing (Bienvenu and Kopp, 1983;

Wax et al., 1984), and applied to velocity analysis by different researchers

(Biondi and Kostov, 1989; Key and Smithson, 1990; Kirlin, 1992).

The seismic signal, in the presence of noise, at receiver i may be modeled

using the following equation:

xi(t) = s(t− τi) + ni(t) i = 1, N , (6.19)

where τi = (t20 + d2
i /v

2)1/2 − t0 is the delay of the signal between the i-th

receiver and a receiver having d0 = 0. If a waveform is extracted along

a hyperbolic path parametrized with velocity v, equation (6.19) may be

rewritten as

xi(t) = s(t) + ni(t) i = 1, N , (6.20)

noindent where, to avoid notational clutter, I used the same variable x(t) to

designate the delayed waveform (equation (6.19)) and the corrected wave-

form (equation (6.20)). The covariance matrix of the the signal is defined

as:

Ri,j(t) = E[xi(t)xj(t)] i, j = 1, N , (6.21)

where E denotes the expectation operator. If we assume the noise and signal

to be uncorrelated the data covariance matrix becomes:

Ri,j(t) = Rsi,j(t) + σ2
n(t)δi,j , (6.22)

where Rsi,j(t) denotes the signal covariance matrix, and δi,j = 1, if i = j

and δi,j = 0, otherwise. Assuming a stationary source and a stationary



216 CHAPTER 6. THE KL TRANSFORM AND EIGENIMAGES

noise process, we may drop the dependence on t. It is easy to verify that

the eigenvalues of the covariance matrix become

λi = λsi + σ2
n i = 1, 2, . . . , N , (6.23)

where λsi are the eigenvalues of the signal covariance matrix. Assuming

that the signal is invariant across each trace, the signal covariance matrix is

rank 1, and we can write the following relationships:

λs1 = N.Ps

λsi = 0 i = 2, ..., N , (6.24)

where Ps = E[s(t)2] denotes the signal power. Using equation (6.23), the

eigenvalues of the data covariance matrix become

λ1 = N.Ps + σ2
n

λi = σ2
n i = 2, ..., N . (6.25)

For uncorrelated noise, the minimal N − 1 eigenvalues of the data are equal

to the variance of the noise. The largest eigenvalue is proportional to the

power of energy of the coherent signal plus the variance of the noise.

In real situations, the eigen-spectrum is retrieved from an estimate of the

data covariance matrix. If the stationary random processes xi(t) and xj(t)

are ergodic the ensemble averages defined in equation (6.21) can be replaced

by time averages (see for instance, Bendat and Piersol, 1971). The estimator

of the covariance matrix becomes:

R̂i,j =
1

2M + 1

M∑

k=−M

xi(k∆t)xj(k∆t) . (6.26)

Using the results given in equations (6.24) and (6.25) it is evident that an

estimator of the noise variance is

σ̂2
n =

1

N − 1

N∑

i=2

λ̂i . (6.27)
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Similarly, an estimator of the signal energy is given by

P̂s =
λ̂1 − σ̂2

n

N
, (6.28)

and equations (6.27) and (6.28) can be combined into a single measure, the

signal-to-noise-ratio:

Ĉ =
1

N

λ̂1 −
∑N

i=2 λ̂i/(N − 1)
∑N

i=2 λ̂i/(N − 1)
. (6.29)

The coherence measure, Ĉ, was devised assuming the presence of a signal

and that the proper velocity is used to extract the waveform. In general the

coherence ,Ĉ, is computed for different gates and different trial velocities.

It is convenient to explicitly emphasize the dependence of the coherence

on these parameters by denoting Ĉ(t0, v). When the gate of analysis con-

tains only noise, the measure Ĉ(t0, v) tends towards zero. When the trial

velocity does not match the velocity of the reflection, it is not possible to

decompose the eigen-structure of the data into signal and noise contribu-

tions. In this case, the covariance matrix has a complete set of eigenvalues

different from zero; therefore it is not possible to recognize which part of the

eigen-spectrum belongs to the noise and which belongs to the signal process.

Key and Smithson (1990) proposed another coherence measure based on

a log-generalized likelihood ratio which tests the hypothesis of equality of

eigenvalues,

Ŵml = M logN

[
(
∑N

i=1 λ̂i/N)N
∏N

i=1 λ̂i

]

. (6.30)

In the absence of signal, λi = σ2
n, i = 1, N and hence Wml = 0. In the

presence of a single reflected signal, λ1 6= 0, λi = 0, i = 2, N and Wml → ∞.

Therefore, Wml provides a strong discrimination between signal and noise.

Key and Smithson (1990) combined equation (6.29) and (6.30) into a single

measure, Kml, given by the product:

K̂ml = Ŵml Ĉ . (6.31)

It is important to point out that only one eigenvalue, λ1, is required to

estimate the coherence measure, Ĉ. Since
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Trace(R̂) = λ̂1 + λ̂2 + . . .+ λ̂N (6.32)

where

Trace(R̂) =
N∑

i=1

R̂i i . (6.33)

It is easy to see from equations (6.32) and (6.33) that only λ̂1 is needed to

compute the coherence measure, Ĉ.

It is also important to mention that the velocity panel obtained via the SNR

coherence measure can be further improved by adopting a bootstrap proce-

dure (Sacchi, 1998). In this case, the seismic traces are randomly sampled

to produce individual estimates of the coherence measure. From this infor-

mation one can obtained an average coherence measure and a histogram (in

fact a density kernel estimator) of the position of the peak that optimizes

the coherence. The improve SNR coherence obtained with this techniques

is portrayed in Figure (6.11).
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Figure 6.10: Left: Semblance of a CMP gather. Right: High resolution
coherence analysis (SNR measure).
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Figure 6.11: Left: Average SNR measure obtained via bootstrapping indi-
vidual realizations. Right: Frequency distribution of the peak that maxi-
mizes the coherence after 50 bootstrap realizations.
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6.3 A Matlab Code for Eigenimage Analysis

% A Code to filter data using the Eigenimage approach

% Generation of the model. Single

% event with parabolic moveout.

dt = 4./1000; w = ricker(20.,dt); nw=max(size(w));

nx = 32; nt = 128;

DATA = zeros(nx,nt);

for i=1:nx

for j=1:nw

c= fix(0.05*i*i);

DATA(i,20+j+c) = w(j);

end

end

% Add noise to the model

NOISE = 0.2 * randn(nx,nt);

DATA = DATA + NOISE;

[U S V] = svd(DATA);

% Reconstruction with 3 eigenimages

p = 4; % Keep 1,2,3.

q = min(size(S));

for i = p:q;

S(i,i) = 0;

end
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% Filtered image

DATA = U*S*V’;
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Chapter 7

Radon Transforms

In this chapter we deal with the numerical implementation of the Radon

transform. We will analyze the problem using the inverse problem formal-

ism and study the problem of designing a high resolution Parabolic Radon

transform for multiple attenuation.

7.1 Slant Stacks

Different techniques have been devised to identify and/or filter linear events.

Generally, they have the following common framework. First, they assume

that a set of linear events are recorded on an array with discrete and limited

coverage. Secondly, they assume that the noise is uncorrelated with the

signals. In geophysics, linear event identification has been an active field

of research. Two classic examples are vertical seismic profiles (VSP) and

slowness vector estimation in seismographic arrays for earthquake detection

and location. In VSP processing, linear event detection-estimation is used

to identify and separate the principal components of the VSP data: the

up-going and the down-going waves.

A general strategy for event identification-estimation involves the following

approach. First, the data are transformed to a new domain where each

component may be isolated. Then, after masking the undesired components,

the data are mapped back to the original domain retaining only the desired

information.

In seismic processing, the Radon transform is commonly known as the τ −p

223
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(τ denotes time and p ray parameter) or slant stack transform. The orig-

inal idea developed by Radon in 1917 (Deans, 1983), has provided a basic

framework for many problems of image reconstruction in physics, astron-

omy, medicine, optics, non-destructive testing, and geophysics. In image

processing, it is also called the Hough transform (Pratt, 1991), which may

be regarded as a transformation of a line in Cartesian coordinate spac e to

a point in polar coordinate space.

In geophysics, the properties of the Radon transform were examined by Phin-

ney et al. (1981), Durrani and Bisset (1984) and Tatham (1984). Chapman

(1981) developed exact formulas for a point source in Cartesian or spherical

coordinates, and for a line source in cylindrical coordinates. The relationship

between the Radon transform and the plane wave decomposition is also well

established (Stoffa et al., 1981; Treitel et al., 1982). Least squares procedures

to compute the Radon transform were investigated by Thorson and Claer-

bout (1985), Beylkin (1987) and Kostov (1990). These authors showed how

to mitigate the smearing caused by the finite aperture. Recently, Zhou and

Greenhalgh (1994) linked the least squares solution to p-dependent Wiener

filters. These researchers derived the slant stack formulas in the continuous

domain, but the resulting algorithms are identical to those obtained by other

researchers ( Beylkin, 1987; Kostov, 1990).

In order to avoid the inversion of prohibitively large matrices the problem

may be posed in the frequency-space domain (f − x). This technique was

adopted by Beylkin (1987), Kostov (1990), Foster and Mosher (1992), and

recently by Zhou and Greenhalgh (1994). This allows us to solve several

small problems in the band that comprises the signal. Some stability con-

cerns arise when the problem is tackled in this manner. Particularly, a least

squares solution can be extremely unstable at low frequencies. In addition,

it is interesting that slant stacks can be also computed in the time-space

domain. Thorson and Claerbout (1985) and, recently Yilmaz and Tanner

(1994), have presented high resolution least squares slant stack operators

designed in time-space domain. Their procedures use an iterative inversion

scheme especially devised to solve large linear sparse operators. Thorson

and Claerbout (1985) have also shown how to update in each iteration the

variances of the model to drive the solution to minimum entropy. Yilmaz
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and Taner (1994) have also developed an interesting scheme based on fuzzy

logic to mitigate the alias.

7.1.1 The slant stack operator (conventional definition)

Let u(h, t) represent a seismic signal. Throughout this chapter the variable

t designates the time and h the offset or range. For a continuous array we

define the slant stack by means of the following transformation

v(p, τ) = (Lu)(p, τ) =

∫ ∞

−∞
u(h, t = τ + hp)dh . (7.1)

Where p and τ denote the slope or ray parameter and the intercept time,

respectively. v(p, τ) is used to designate the signal in the τ −p domain. The

adjoint transform L∗ is given by

ũ(h, t) = (L∗v)(p, τ) =

∫ ∞

−∞
v(p, t = τ − hp)dp . (7.2)

In the frequency domain, the pair of transformations are given by,

V (p, ω) =

∫ ∞

−∞
U(h, ω)eiωphdh, (7.3)

Ũ(h, ω) =

∫ ∞

−∞
V (p, ω)e−iωphdp, (7.4)

substituting, (2.3) into (2.4) yields

Ũ(h, ω) =

∫ ∞

−∞
U(h′, ω)

∫ ∞

−∞
e−iωp(h−h′)dp dh′ (7.5)

which may be written as follows

Ũ(h, ω) = U(h, ω) ∗ ρ(h, ω) , (7.6)

where ∗ denotes convolution and the function ρ is given by
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ρ(h, ω) =

∫ ∞

−∞
e−iωphdp , (7.7)

making the substitution z = −ωp equation (7.7) becomes

ρ(h, ω) =

∫ ∞

−∞

1

|ω|e
ihzdz =

2π

|ω|δ(h) . (7.8)

The convolution operator is a delta function with respect to the variable h.

Using the property of the δ function,

Ũ(h, ω) = 2π
|ω|U(h, ω) ∗ δ(h)

= 2π
|ω|U(h, ω)

(7.9)

the inversion formula becomes,

U(h, ω) =
|ω|
2π
Ũ(h, ω) . (7.10)

The inverse is computed in two steps. First, the adjoint is used to evaluate

Ũ(h, ω). Then, Ũ(h, ω) is multiplied by the frequency response of the ρ

filter. The conventional slant stack pair in the frequency domain results in,

V (p, ω) =

∫ ∞

−∞
U(h, ω)eiωphdh,

U(h, ω) =
|ω|
2π

∫ ∞

−∞
V (p, ω)e−iωphdp . (7.11)

Now, consider that the range of p is a finite interval, p ∈ [−P,P ]. This case

leads to the following ρ filter,

ρ(h, ω) =

∫ P

−P
e−iωphdp = 2P

sin(ωPh)

ωPh
. (7.12)

Substituting (7.12) in (7.6),

Ũ(h,w) = 2P

∫ ∞

−∞
U(h′, ω)

sin(ωP (h− h′))

ωP (h− h′)
dh′. (7.13)
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It is evident that the data may be recovered after solving a deconvolution

problem. Spatial deconvolution is required since the infinite range of the

variable p is truncated to a finite range. The wavenumber response of the ρ

filter has the following expression:

ρ(k, ω) =

∫ ∞

−∞
ρ(h, ω)eikhdh

=

∫ ∞

−∞

∫ P

−P
e−i(ωp−k)hdhdp

=

∫ P

−P
δ(ωp − k)dp

=
1

ω

∫ ωP

−ωP
δ(k′ − k)dk′ (7.14)

=

{
1
ω k ≤ |ωP |
0 , otherwise

According to the last equation, the spatial deconvolution will be unstable

if the wavenumbers in the data lie outside the range [−ωP, ωP ]. Equation

(2.14) also shows that the deconvolution is unstable at low frequencies.

7.1.2 The inverse slant stack operator

The definition of the forward slant stack operator and its adjoint may be

changed to construct another slant stack pair,

u(h, t) = (L∗v)(p, τ) =

∫ ∞

−∞
v(p, t = τ − hp)dp (7.15)

ṽ(p, τ) = (Lu)(h, t) =

∫ ∞

−∞
u(h, t = τ + hp)dh, (7.16)

the pair of transformations can be posed in the frequency-offset domain,

U(h, ω) =

∫ ∞

−∞
V (p, ω)e−iωphdp, (7.17)
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Ṽ (p, ω) =

∫ ∞

−∞
U(h, ω)eiωphdh . (7.18)

Substituting, (7.17) into (7.18) yields,

Ṽ (p, ω) =

∫ ∞

−∞
V (p′, ω)

∫ ∞

−∞
e−iωh(p−p′)dhdp′ , (7.19)

where now, the convolution is with respect to the variable p, and the con-

volutional operator is given by

γ(p, ω) =

∫ ∞

−∞

1

|ω|e
ihpdh =

2π

|ω|δ(p) . (7.20)

The γ filter is a delta function with respect to the variable p. Therefore,

equation (7.19) becomes,

Ṽ (p, ω) =
2π

|ω|V (p, ω) (7.21)

or equivalently

V (p, ω) =
|ω|
2π
Ṽ (p, ω) . (7.22)

From the above derivation, it is clear that the ρ and the γ filters have the

same frequency response. Finally, the slant stack pair becomes,

V (p, ω) =
|ω|
2π

∫ ∞

−∞
U(h, ω)eiωphdh,

U(h, ω) =

∫ ∞

−∞
V (p, ω)e−iωpdp . (7.23)

Assuming that h ∈ [−H,H] (finite aperture), the γ filter has the following

structure

γ(p, ω) =

∫ H

−H
eiωphdh = 2H

sin(ωHp)

ωHp
. (7.24)
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Hence, V (p, ω) may be calculated by solving the following integral equation,

Ṽ (p, ω) = 2H

∫ ∞

−∞
V (p′, ω)

sin(ωH(p− p′))

ωH(p − p′)
dp′ . (7.25)

After a comparison of the slant stacks pairs, equations (7.11) and (7.23),

it is clear that a deconvolution procedure is required in both cases. In

the conventional slant stack transform, the deconvolution is necessary to

recover the data from the τ−p space. In the inverse slant stack operator the

deconvolution process is required to estimate the τ−p space. The truncation

effect of the variable p may be alleviated by choosing the proper region of

support of the transform. The truncation of the variable h is associated with

the resolution of the transform and cannot be alleviated by simple means.

Generally, both the variables h and p are truncated. Thus, deconvolution

should be carried out in both the forward and inverse transform (Zhou and

Greenhalgh, 1994). However, the range of p may be chosen in such a way

that most of the energy in the signal lies within this range.

7.1.3 The sampling theorem for slant stacks

Assuming that the wavefield is evenly sampled according to U(n∆h, ω), n =

0,±1,±2, . . ., the relationship between the τ−p and the h−t spaces is given

by

U(n∆h, ω) =
|ω|
2π

∫ ∞

−∞
V (p, ω)e−iωpn∆hdp , (7.26)

where V (p, ω) denotes the slant stack corresponding to a continuous wave-

field U(h, ω). The integration domain can be decomposed into small subdo-

mains as follows,

U(n∆h, ω) =
|ω|
2π

∞∑

k=−∞

∫ (2k+1) π
ω∆h

−(2k−1) π
ω∆h

V (p, ω)e−iωpn∆hdp

=
|ω|
2π

∞∑

k=−∞

∫ π
ω∆h

− π
ω∆h

V (p+ 2k
π

ω∆h
, ω)e−iω(p+2k π

ω∆h
)n∆hdp(7.27)
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since e−i2πnk = 1 ∀n k, the last equation may be written in the following

form

U(n∆h, ω) =
|ω|
2π

∫ π
ω∆h

− π
ω∆h

Vd(p, ω)e−iωpn∆hdp, (7.28)

where the relationship between the slant stack of the continuous signal and

the one corresponding to the sampled wavefield, Vd(p, ω) , is given by

Vd(p, ω) =
∞∑

k=−∞

V (p+ 2k
π

ω∆h
, ω). (7.29)

Thus, the discrete signal has an ω − p representation with support in the

range p ∈ [− π
ω∆h ,

π
ω∆h ]. The components with slope p−2 π

ω∆h , p+2 π
ω∆h , p−

4 π
ω∆h , p + 4 π

ω∆h , . . . will appear to have slope p and every slope outside the

range (− π
ω∆h ,

π
ω∆h) will have an alias inside this range. If the continuous

signal has all the components inside that range, the aliased components do

not exist and therefore we can write Vd(p, ω) = V (p, ω). It is clear from the

above discussion that spatial sampling must be chosen so as to avoid the

aliasing effect. If P = Pmax = −Pmin, the following relationship guarantees

the absence of alias,

∆h ≤ 1

2Pfmax
, (7.30)

where fmax = ωmax/2π is the maximum temporal frequency of the seismic

signal. The product P fmax is also the maximum wavenumber. Similarly, if

∆h is given, the maximum ray parameter that can be retrieved ed without

alias is given by

Pmax =
1

2∆hfmax
. (7.31)

For a non-symmetric slant stack, Pmax 6= −Pmin, equation (7.30) is modified

as follows (Turner, 1990),

∆h ≤ 1

P ′fmax
, (7.32)
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where P ′ = |Pmax − Pmin|.

7.2 Discrete slant stacks

Discrete versions of equations the continuous Radon pair are obtained by

replacing integrals by summations and imposing finite limits. First, assume

that the seismogram contains N = Lf − Ln traces, where the indices Lf and

Ln denote far and near offset traces respectively.

v(p, τ) = (Lu)(p, τ) =

Lf∑

l=Ln

u(hl, τ + hlp)∆hl, (7.33)

where ∆hl = (hl+1 − hl) for l = Ln, . . . , Lf − 1. Similarly, we approximate

the continuous Radon transform by the following expression

ũ(h, t) = (L∗v)(τ, p) =
Jmax∑

j=Jmin

v(h, t − hp)∆pj (7.34)

where ∆pj = (pj+1 − pj) for j = Jmin, . . . , Jmax − 1. Taking the Fourier

transform of the above equations yields

V (p, f) =

Lf∑

l=Ln

U(hl, f)e2πifhlp∆hl (7.35)

Ũ(h, f) =
Jmax∑

j=Jmin

V (p, f)e−2πifhpj∆pj . (7.36)

Using matrix notation it is possible to rewrite the slant stack and its adjoint

as follows (f is omitted to avoid notational clutter),

m = LHd (7.37)
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d̃ = Lm (7.38)

The operators L and LH form an adjoint pair. The matrix L is the forward

operator and L∗ denotes the adjoint operator. The vector m indicates the

Radon space V (p, f) at discrete values of p and fix frequency f , whereas the

vector d indicates the data U(h, f) at discrete values of h and fix frequency

f .

7.2.1 The discrete slant stack operator (conventional defini-
tion)

The slant stack operator, equation (7.37), maps the t − x space into the

τ − p domain; the adjoint, equation (7.38), maps the τ − p domain into the

t − x domain. It is clear that since L is non-orthogonal L and LH do not

constitute an inverse pair. Given m = Ld, the problem is how to recover

d. A relationship between d and d̃ is obtained after substituting (7.37) into

(7.38)

d̃ = LLH d . (7.39)

Equation (2.41) is uniquely invertible in f ∈ B provided that det(LLH) 6= 0

in the band B,

d = (LLH)−1d̃

= G−1d̃ .
(7.40)

The N × N matrix G = LLH represents a discrete version of the ρ filter.

The pair of transformations which map a signal from f − h to f − p and

vice-versa is given by

m = Ld
d = G−1Lm .

(7.41)

The vector m always exists since it is obtained by means of a simple map-

ping. Both expressions constitute an inverse pair when the inverse of G
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exits. The forward and inverse pair does not permit to adequately model

the signal when additive noise is present. If the data are contaminated with

noise, the noise is mapped to the Radon domain.

7.2.2 The least squares solution

Assume that the data is the result of applying a Radon operator (slant stack)

to a m.

d = Lm (7.42)

The idea is to find m such that the following objective function is minimized

(Yilmaz, 1994),

J = ||d− Lm||2 (7.43)

The solution to this problem is the least squares solution

m = (LHL)−1LHd (7.44)

In general the inverse needs to be stabilized using a damping parameter.

m = (LHL + µI)−1LHd (7.45)

In general, this is the approach that it is used to compute slant stacks and

parabolic Radon transfomrm. Other techniques to improve the resoltion of

these operators where proposed by Sacchi and Ulrych (1995).
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7.2.3 Example

In Figure (7.2) we display 3 panels. The first panel is the ideal τ − p signal;

the second panel is the τ −p signal transformed to offset− time. These are

two linear events with positive and negative slope. The third panel (left)

is the inverted τ − p signal using least-squares. It is clear that artifacts

have been created in the inverted τ − p. These artifacts are generated by

alias. As we have already seen fmax, the maximum ray parameter and the

spatial sampling must satisfied a Nyquist condition (equation (7.30)). This

condition is not satisfied and, therefore, the τ − p domain exhibits alias.

In Figure (7.2) I muted the the τ−p domain eliminating all the contribution

where p > 0. The muted τ − p domain is used to reconstruct the data,

this is displayed in the Figure (??) [Left]. This procedure can be used to

discriminate down-going and up-going wavefields in Vertical Seismic Profiles

(VSP).

Figures (7.3) and (7.4) displayed a simulation similar to the one described

above but now the original signal in t−offset has spectral components that

are contained in the 5 − 35Hz band. In other words I have eliminated the

alias artifacts.

7.3 Parabolic Radon Transform (Hampson, 1986)

This is a simple modificarion to the slant stack, instead of integrating along

curves of the form

t = τ + ph

we use curves of the type

t = τ + qh2

.

This is a good approximation to process data containing hyperbolic events

after NMO correction Parabolic Radon Transform are utilized to removed

multiple reflections. After NMO correction the moveout of the primaries is
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Figure 7.1: Left: Ideal τ − p panel. Center: Data generated by forward
transforming the ideal τ − p panel. Right: Inverted τ − p panel.

zero. The residual move out of the multiples follows in a first order approx-

imation a parabolic moveout. The transform is used to isolated multiples

from primaries in order to mute (filter) them out.

Assume that in a CMP (common mid point gather) you have two events:

a primary and a multiple. Let us assume that the intercept time of these

events T0 is the same.

The travel-time curve for the primary is given by:

Tp =
√

(T 2
0 + h2/v2

p) (7.46)

,

and the travel-time for the multiple is given by:

Tm =
√

(T 2
0 + h2/v2

m) . (7.47)
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Figure 7.2: Left: Inverted τ − p panel after muting. Right: Data recon-
structed by forward modeling the inverted/muted τ − p panel.

If the multiple is generated by a shallow layer or by the water column we

can consider vp > vm.

Now suppose that we apply NMO correction to the complete data set with

the NMO law that uses the velocity of the primary. The NMO correction

entails applying the following time shift to the data

∆TNMO = T0 −
√

(T 2
0 + h2/v2

NMO) , (7.48)

therefore, the time of the primary after NMO is

Tp(After) = Tp + ∆TNMO (7.49)
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Figure 7.3: Left: Ideal τ−p panel. Center: Data generated by forward trans-
forming and band-limiting the ideal τ − p panel. Band-limiting is needed to
eliminate alias. Right: Inverted τ − p panel.

It is clear that is the NMO velocity is the velocity of the primary, the time

of the primary becomes

Tp(After) = T0 . (7.50)

In other words, the primary has the same time for all offsets (a flat event).

What is the time of the multiple after NMO?. Let us try to compute it,

Tm(After) = Tm + T0 −
√

(T 2
0 + h2/v2

NMO) , (7.51)

or after replacing Tm

Tm(After) = T0 +
√

(T 2
0 + h2/v2

m) −
√

(T 2
0 + h2/v2

NMO) (7.52)
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Figure 7.4: Left: Inverted τ − p panel after muting. Right: Data recon-
structed by forward modeling the inverted/muted τ − p panel. Note that
the alias artifacts have disappeared.

The two square roots in the above equation can be expanded in Taylor series

(Keeping only up to the second order term) we have

Tm(After) ≈ T0 +
1

2T0 v2
m

h2 − 1

2T0 v2
NMO

h2 (7.53)

which can be re-written as

Tm(After) ≈ T0 + qh2 (7.54)

where
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q =
1

2T0
(

1

v2
− 1

v2
NMO

) . (7.55)

It is clear that a transform with parabolic integration path can be con-

structed by simple interchanging in the original slant stack h by h2. Some

people prefer to parameterize the parabola in terms of the residual moveout

time at far offset,

t = τ + q
h2

h2
max

,

then it is clear that the parameter q is nothing else that the moveout in

seconds at the far offset trace.

In Figures (7.56) and (7.57) we portrayed a primary and a multiple before

and after parabolic Radon transform filtering. In this example q is residual

moveout at far offset.
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Figure 7.5: Left:A Primary and a multiple after NMO correction. Inverted
τ − q panel.

7.4 High resolution Parabolic Radon Transform

The high resolution Parabolic Radon transform proposed by Sacchi and

Ulrych (1995) entails the utilization of a regularization technique that leads

to an operator that does not exhibit a Toeplitz structure. In the original

formulation of the high resolution Radon transform the operator is inverted

using Cholesky decomposition. This is quite expensive compared to the

classical least squares Radon transform that uses the Levinson recursion to

invert a Toeplitz form.

We propose a method to achieve high resolution at a computational cost of

the order of the conventional parabolic least squares Radon transform. This

feature makes our new algorithm quite attractive to process large data sets.

The Parabolic Radon transform is a widely accepted technique for multiple
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Figure 7.6: Left: Inverted τ − q panel after muting. Right: Data recon-
structed by forward modeling the inverted/muted τ − q panel. In this ex-
ample the multiple has been eliminated by muting in the τ − q domain.

removal (Hampson, 1986). The technique can be implemented in the fre-

quency domain via a fast algorithm that exploits the Toeplitz structure of

the least squares Radon operator (Kostov, 1990; Darche, 1990). Recently,

Sacchi and Ulrych (1995) proposed a high resolution algorithm to incre-

ment the ability of the transform to distinguish events with similar moveout

curves. This algorithm is based on a procedure that attempts to find a sparse

representation of the reflections in the parabolic Radon domain. A similar

algorithm has been proposed by Cary (1998). In this case the Radon panel

is constrained to be sparse in both the Radon parameter and the intercept

time. The high resolution parabolic Radon transform can be used to isolate

multiples interferences with a few milliseconds of residual moveout at far

offset. This is a problem frequently encountered when dealing with short
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period multiple reflections generated by carbonate targets in the Western

Canadian Basin (Hunt et al., 1996).

One of the advantages of the high resolution parabolic Radon transform

is that the focusing power of the transform is considerably increased with

respect to the classical least squares parabolic Radon transform. Unfortu-

nately, the high resolution parabolic Radon transform leads to the inversion

of an operator that is Hermitian but does not exhibit a Toeplitz structure.

The resulting Hermitian operator is inverted using Cholesky decomposition.

The Cholesky method for solving Hermitian linear systems of equations re-

quires a number of operations that is proportional to M3, where M is the

dimension of the Hermitian operator.

7.4.1 Least squares Parabolic Radon transform

Common mid point (CMP) gathers after normal moveout (NMO) correction

can be modeled as a superposition of events with parabolic moveout:

d(xj , t) =
M∑

k=1

m(qk, τ = t− qk x
2
j ) , j = 1, N , (7.56)

where d(xj , t) denotes the CMP gather, xj the offset, m(qk, τ) is the Radon

panel, qk the discrete Radon parameter and τ the intercept time. The data

con sist of N seismic traces which do not need to be regularly sampled. The

Radon parameter is uniformly discretized according to qk = q0 + ∆q (k −
1), k = 1, . . . ,M .

Equation (7.56) is essentially a decomposition of the CMP gather in terms

of parabolic events distributed in the plane τ, q. It is computational more

convenient to rewrite the last equation in the frequency-offset domain. Tak-

ing Fourier transform with respect to the temporal variable t we arrive to

the following expression

d(xj , f) =
M∑

k=1

m(qk, f) ei2πfqkx2

j , j = 1, . . . , N . (7.57)

The calculations can be carried out independently for each frequency f .

Equation (7.57) can be written in matrix form as follows:
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d(f) = L(f)m(f) . (7.58)

To avoid notational clutter we will drop the frequency dependency in equa-

tion (7.58) and write d = Lm .

The least squares Radon operator is estimated by minimizing the following

cost function.

J = ||d − Lm ||2 + µ||m||2 . (7.59)

The regularization term µ||m||2 is used to control the roughness of the

solution. It can be shown that this term is one of the major sources of

amplitude smearing in the Radon panel (Sacchi and Ulrych, 1995).

Taking derivatives of J with respect to m and equating them to zero yields

(LH L + µI)m = LHd
= madj .

(7.60)

In the last equation madj denotes the low resolution Radon transform ob-

tained using the adjoint or transpose operator LH . The least squares solu-

tion becomes

m = (LH L + µI)−1madj

= (R + µI)−1madj .
(7.61)

At this point some observations are in order. First it is clear that R =

LH L + µI is a Toeplitz form (Kostov, 1990), with elements given by

{R + µI}l,m =
N∑

k=1

e−i2πf∆q(l−m)x2

k + µδl,m . (7.62)

Solving this equation using the Levinson recursion requires approximately

4M2 + 7M operations, and storage of only the first row of the Toeplitz

matrix (Marple, 1987). This feature yields to a very efficient algorithm to

compute the parabolic Radon transform.

7.4.2 High resolution parabolic Radon transform

In the high resolution parabolic Radon transform the vector m is retrieved

by solving the following equation:
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(R + WHW)m = madj . (7.63)

The matrix W is a diagonal matrix with elements that depend on m (Sacchi

and Ulrych, 1995). This leads to an iterative algorithm where W is boot-

strapped from the result of a previous iteration. In general, the iterative

procedure is not required if we are able to design W from a priori informa-

tion. The matrix of weights W is a diagonal matrix with elements given

by

{W}l,m = wl δl,m, l,m = 1, . . . ,M . (7.64)

The elements of the diagonal form R + WH W become:

{R + WH W}l,m =
N∑

k=1

e−i2πf∆q(l−m)x2

k + w2
l δl,m . (7.65)

It is clear that the addition of a diagonal matrix with non-constant e el-

ements has destroyed the Toeplitz structure of the operator. The above

matrix can be inverted by the Cholesky method in a number of operations

proportional to M3. From the computational point of view it is more con-

venient to compute the Radon transform using a constant diagonal regular-

ization (equation (7.60)). However, if we want to estimate a high resolution

Radon operator, the regularization term must be a diagonal form with non-

constant elements. The elements of W are used to emphasize the Radon

parameters qk that need to be constrained to be zero. In general, the matrix

W is bootstrapped from the data in an iterative manner. The aforemen-

tioned procedure is described in Sacchi and Ulrych (1995).

In our synthetic example, the elements of the diagonal matrix WHW are

given by

w2
k =

{
100. if qk /∈ Q
0.0001 if qk ∈ Q ,

(7.66)

whereQ indicates the set of parameters qk where the reflections are localized.

These weights can be interpreted as the inverse of a variance in model space.

If w2
l is large, 1/w2

l is small and therefore, the algorithm will constraint the

areas of no reflections in the τ, q space to be zero. It is clear that the
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resolution is enhanced by inhibiting the creation of smearing in the Radon

panel.

7.4.3 Conjugate gradients and circulant matrices

To solve equation (7.63) we adopt the method of conjugate gradients, which

is summarized below.

We want to solve (R + D)m = madj , where D = WHW.

Start with an initial solution m0, set p0 = r0 = madj − (R + D)m0,

αi+1 = (ri, ri)/(pi, (R + D)pi)

mi+1 = mi + αi+1pi ri+1 = ri − αi+1(R + D)pi

βi+1 = (ri+1, ri+1)/(ri, ri)

pi+1 = ri+1 + βi+1pi

where i = 0, 1, 2, . . . K denotes the iteration number.

The cost of the conjugate gradients algorithm is dominated by the cost of

multiplying a matrix by a vector. In general, matrix times vector multiplica-

tion is an O(M2) process. In our problem we will use the Toeplitz structure

of R to find a fast manner to compute the aforementioned operation.

The product (R+D)x can be decomposed into two products: Rx+Dx. The

first product can be efficiently computed using the Fast Fourier Transform

(FFT), the second product involves only 2M operations (M products plus

M additions) and does not substantially increase the computational cost of

the inversion.

The first product, y = Rx, is evaluated by augmenting the system as follows:

[
y
y′

]

= Raug

[
x
0

]

, (7.68)

where Raug is the original Toeplitz matrix after being properly folded to

become a circulant matrix (Strang, 1986; Schonewille and Duijndam, 1998).

The right hand side can be computed by multiplying the Fourier transform

of the first row of Raug by the Fourier transform of vector [x ,0]T , and taking

the inverse Fourier transform of this product. Now our matrix times vector

operation takes O(M ′ logM ′) operations where M ′ is the size of augmented

matrix (M ′ = 2M). We have found that the conjugate gradients algorithm

convergences after a few iterations (K ≈ M/5). Therefore, the inversion
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becomes an O(KM ′ Log(M ′)) process. This is more efficient than the direct

inversion of equation (7.63) by the Cholesky method.

7.4.4 Example

In Table 7.1 we present a comparison of CPU times in seconds for 3 different

algorithms. The times in Table 1 correspond to the total computational cost

for 512 frequencies. These simulations were performed on a SGI Origin 2000.

In both cases we have 4 parabolic events which were mapped to the Radon

domain u sing the following algorithms:

1. Lev: Classical least squares parabolic Radon transform implemented

via the Levinson recursion (valid for a constant damping).

2. Chol: High resolution Radon transform implemented via the Cholesky

decomposition.

3. CG+FFT: High resolution parabolic Radon transform implemented

via conjugate gradients plus matrix times vector multiplication using

the FFT.

Is is clear that the new algorithm can achieved high resolution at a com-

putational cost comparable to the one of the classical least squares Radon

transform computed with the Levinson recursive solution.

In Figure (7.1) we portray the results obtained for the 256 × 256 simula-

tion. Note that the differences between the high resolution Radon transform

computed with the Cholesky decomposition and the proposed algorithm are

minimal.

7.5 Programs for Slant Stack and Parabolic Radon

Transforms

The following two programs are a MATLAB implementation of the Radon

transform in f − x and f − p. The inverse transform is solved using Least
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N ×M Lev Chol CG+FFT

128 × 128 2 6 3

256 × 256 8 42 12

Table 7.1: CPU times in seconds for the 3 algorithms tested in this study.
N denotes the number of traces and M the number of q parameters.

squares. The high resolution implementation using circulant matrices is a

little bit more tricky and requires more than a few lines of Matlab.

Forward Transform

Operator to compute the forward linear and parabolic Radon transform.

function [d]=for_taup(m,dt,h,q,N,flow,fhigh);

%INV_TAUP An inverse Radon transforms. Given the seismic data, this

% function computes the Radon panel by inverting the Radon operator

%

% [d] = for_taup(m,dt,h,q,N);

%

%

% IN m: the Radon panel (d(nt,nq)

% dt: sampling in sec

% h(nh) offset or position of traces in mts

% q(nq) ray parameters to retrieve or curvature

% of the parabola if N=2

% N:1 Linear tau-p

% :2 Parabolic tau-p

% flow, fhig: min and max freq. in Hz

%

% OUT d: the data

%

%

% SeismicLab

% Version 1
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Figure 7.7: A synthetic CMP gather composed of 4 parabolic events is used
to test 3 different algorithms to compute the Radon transform. Lev. in-
dicates the classical solution using least squares with a constant damping
term; the Levinson algorithm is used to invert the resulting Toeplitz form.
Chol. indicates the high resolution solution using non-constant damping
(8)), this solution is computed by means of the Cholesky decomposition.
CG+FFT indicates the proposed fast algorithm to compute the high res-
olution Radon transform. In this example the size of the Radon operator is
256 × 256. CPU times in seconds are given in Table 7.1

%

% written by M.D.Sacchi, last modified December 10, 1998.

% sacchi@phys.ualberta.ca

%

% Copyright (C) 1998 Signal Analysis and Imaging Group

% Department of Physics
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% The University of Alberta

%

nt= max(size(m));

nh = max(size(h));

M = fft(m,[],1);

D = zeros(nt,nh);

i = sqrt(-1);

ilow = floor(flow*dt*nt)+1; if ilow<1; ilow=1;end;

ihigh = floor(fhigh*dt*nt)+1;

if ihigh>floor(nt/2)+1; ihigh=floor(nt/2)+1;end

for if=ilow:ihigh

f = 2.*pi*(if-1)/nt/dt;

L = exp(i*f*(h.^N)’*q);

x = M(if,:)’;

y = L * x;

D(if,:) = y’;

D(nt+2-if,:) = conj(y)’;

end

D(nt/2+1,:) = zeros(1,nh);

d = real(ifft(D,[],1));

return;

Inverse transform

Operator to compute the LS inverse Radon transform. Notice that this is

an “academic” implementation. A fast implementation involves replacing

inv by a fast solver (i.e., Levinson’s recursion).

function [m] = inv_taup(d,dt,h,q,N,flow,fhigh,mu);

%INV_TAUP An inverse Radon transform. Given the seismic data,
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% this subroutine computes

% the Radon panel by inverting the Radon operator

%

% [m] = inv_taup(d,dt,h,q,N,flow,fhigh,mu)

%

% IN d: seismic traces (d(nt,nh)

% dt: sampling in sec

% h(nh) offset or position of traces in mts

% q(nq) ray parameters to retrieve or curvature

% of the parabola if N=2

% N:1 Linear tau-p

% :2 Parabolic tau-p

% flow: freq. where the inversion starts in HZ (> 0Hz)

% fhigh: freq. where the inversion ends in HZ (> Nyquist)

% mu: regularization parameter

%

% OUT m: the linear or parabolic tau-p panel

%

%

% SeismicLab

% Version 1

%

% written by M.D.Sacchi, last modified December 10, 1998.

% sacchi@phys.ualberta.ca

%

% Copyright (C) 1998 Signal Analysis and Imaging Group

% Department of Physics

% The University of Alberta

%

nt= max(size(d));

nq = max(size(q));

nh = max(size(h));
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D = fft(d,[],1);

M = zeros(nt,nq);

i = sqrt(-1);

ilow = floor(flow*dt*nt)+1; if ilow<1; ilow=1;end;

ihigh = floor(fhigh*dt*nt)+1;

if ihigh>floor(nt/2)+1; ihigh=floor(nt/2)+1;end

for if=ilow:ihigh

f = 2.*pi*(if-1)/nt/dt;

L = exp(i*f*(h.^N)’*q);

y = D(if,:)’;

x = L’*y;

MATRIX = L’*L;

tr=real(trace(MATRIX));

Q =mu*tr*eye(nq);

x = inv(MATRIX+Q) *L’* y;

M(if,:) = x’;

M(nt+2-if,:) = conj(x)’;

end

M(nt/2+1,:) = zeros(1,nq);

m = real(ifft(M,[],1));

return



252 CHAPTER 7. RADON TRANSFORMS

7.6 Time variant velocity stacks

We will discuss in this section the computation of time variant operators

that can be used as an alternative to the parabolic Radon transform.

The parabolic Radon transform is a time invariant operator, therefore it can

be implemented in the frequency domain. This trick permits one to solve

several small problems, one at each frequency, instead of a large problem

involving all the time-offset-velocity samples at the same time.

It is clear that in the case of the parabolic Radon transform time invari-

ance is achieved by means of an approximation. It might happen that the

parabolic approximation is not properly satisfied and consequently, travel-

times (especially at far offsets) are not properly modeled.

In this part of the course, we will focus our attention of the computational

aspects of Hyperbolic Radon operators.

We have already mentioned that the data in the CDP domain can be

modeled as a superposition of hyperbolas. User this assumption a hy-

perbolic stack operator can be used to map hyperbolas (reflections) into

time − velocity pairs. In other words, our operator is used to map data

from offset− time to velocity− time space. In the new space we can iden-

tify multiple reflection and filter them out. We can also use this type of

operators to reduce random noise and to enhance the overall aspect of the

seismic reflection which might be hidden by strong ground-roll (in a CSG)

or any other type of deterministic noise.

The time-variant velocity-stack operator is defined in terms of summation

along Dix hyperbolas, m(τ, v) is used to designate the velocity-stack and

d(t, h) the CMP gather:

d(t, h) =

∫
m(τ =

√
t2 − h2/v2, v) dv , (7.69)

where h is source-receiver offset, t is two-way travel-time, v is the rms ve-

locity, and τ is two-way vertical travel-time. After discretization and lexi-

cographic arrangement, equation (7.69) can be written as

d = Lm . (7.70)
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The vectors d and m have nt × nh and nτ × nv elements, respectively.

The dimension of the operator L is (nt × nh) × (nt × nτ). The forward

or modeling operator, L, picks a wavelet in velocity space and produces

a hyperbola in data space. The transpose operator LT is a simple NMO

followed by stacking operator.

To find the inverse operator we consider the problem

Minimize {φ = ||Lm− d||22}

Differentiating φ with respect to m yield the least-squares solution

m̂ = (LTL)−1LTd = (LTL)−1m0 , (7.71)

where for simplicity we have assumed that L is full rank. In equation (7.71)

m0 is the low resolution velocity-stack computed by means of the adjoint or

transpose operator (Sacchi and Ulrych, 1995). The velocity stack computed

after inversion, m̂, possesses more resolution that m0. Unfortunately, the

computation of m̂ involves the inversion of LT L. If we assume a typical CMP

gather of 48 channels and 1000 samples per trace. In addition, suppose that

48 traces and 1000 samples were used to discretize the velocity, v, and the

intercept time, τ , respectively. In this case LTL has dimension 24000×24000.

It is evident that direct methods cannot be applied in this type of problems.

7.6.1 The conjugate gradients algorithm

The trick here is to use a semi-iterative technique to find an approximate

solution to our problem. The advantage of the CG algorithm is the the

matrix L does not need to be stored. In fact, L is not even a matrix but an

operation perform on a vector. To apply the CG algorithm we need first to

define the operations L and LT .

It is clear that L is an operator that picks a wavelet in the τ−v and produces

a hyperbola in t− h. The operator LT (the adjoint or transpose operator)

does the opposite, it gathers information in t − h along a hyperbolic path

and collapses this information into a point in τ − v.
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Let us assume that we have a code capable of performing the following operations (as I have
already mentioned L and L′ do not need to be matrices)

y = Lx x′ = LT y .

To solve the problem ||Lx − y||2 with an initial solution x0, we use the following Conjugate
Gradients (CG) algorithm:

Set initial values: r = y − Lx0 , g = LT r , s = g

for i = 1:ITERMAX {

ss = Ls , δ = ||ss||2

α = γ/∆

x = x+ α s

r = r − α ss

g = LT r

s = g + β s

• }

The CG algorithm will find the least squares solution for the over-determined

problem in N iterations where N is the total number of observations. In

the under-determined problem, the CG converges to the minimum norm

solution. The technique gives the exact answer for exact arithmetics, but of

course round-off errors will affect the convergence of the algorithm. This is

why the CG is often referred as a semi-iterative technique.

In the computation of the velocity stacks, we will use on a few iterations.

How many iterations?. We can say, that we will use enough iterations to

properly model the hyperbolic events. In fact, the CG method allows us

to explore efficiently our solution by stopping the algorithm at any number

of iteration and then, if the solution is not optimal, we can re-start the

algorithm until a satisfactory misfit is obtained.
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7.6.2 Example

We will analyze the performance of the CG with synthetic and real data

examples. In Figure (7.8a) we portray a synthetic CMP gather. The model

is composed of 2 primaries reflections of 1500m/s (water column) and a

primary of 1700 m/s at 0.65 s. In Figure (7.8b) we portray the velocity

gather obtained using the adjoint operator. It is clear that this gather does

not offer enough resolution to properly identify and separete the multiple

event at 0.65 s from the primary. In Figure (7.8c) we portray the velocity

gather obtained after inverting the data using the CH algorithm. Figure

(7.8d) is the primary obtained after muting the velocy gather.

In Figure (7.9) I displayed the velocty gather obtained via the CG algorithm

after amplitude clipping. In this panel we also portray the artifacts that arise

from finite aperture and sampling (alias).
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Figure 7.8: (a) Synthetic data. (b) Velocity gather obtained using the ad-
joint operator. (c) Velocity gather computed using the least-squares inver-
sion. (d) Recovered data (primary) obtained after the de-multiple process.
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Figure 7.9: Clipped version of Figure (7.8)b showing finite aperture and
sampling (alias) artifacts.
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The following subroutine permits to compute forward and adjoint Hyper-

bolic Radon operators. I have included a linear interpolation step. See how

do I define the adjoint of interpolation. It is important to stress that the

forward and adjoint pairs must pass the dot product test. Otherwise, the

CG inversion will not work. Once you have your forward and adjoint oper-

ators encapsulated in a subroutine it’s quite simple to put together a CG

inversion code.

subroutine Hyperbolic_Radon(dt,nt,v,nv,h,nh,m,d,c)

c

c Compute velocity panels when c = ’a’ (Adjoint Hyper. Radon)

c Compute CMP gathers when c = ’f’ (Forward Hyper. Radon)

c c is character * 1

c INPUT

c dt : sampling in sec

c nt : number of time samples (also number of tau samples)

c v(nv) : axis of the Radon panel (velocity in m/s). It can be

c changed by 1/vel^2 or moveout at far offset

c h(nh) : offset in meters

c h(1) is offset of trace 1, h(2) is offset of trace 2....

c

c INPUT/OUTPUT

c d(nh,nt) : cmp or super-cmp input if c = ’a’

c m(nv,nt) : Radon panel output if c = ’a’

c

c d(nh,nt) : cmp or super-cmp output if c = ’f’

c m(nv,nt) : Radon panel input if c = ’f’

c

real d(300,2000), m(300,2000),h(300)

real v(300)

character * 1 c
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if(c.eq.’a’) call clean(m,nv,nt) ! initialize m with zeros

if(c.eq.’f’) call clean(d,nh,nt) ! initialize d with zeros

do ih =1,nh

do iv=1,nv

do itau=1,nt

ttt=(itau-1)*dt

time=sqrt(ttt**2+(h(ih)/v(iv))**2)

it1 = int(time/dt)

a = time/dt - float(it1) !Coeff. of the linear interp.

it2 = it1 + 1

if(it1.lt.nt.and.it1.ge.1) then

if(c.eq.’a’) m(iv,itau) = m(iv,itau)+(1.-a)*d(ih,it1)+a*d(ih,it2)

if(c.eq.’f’) d(ih,it1) = d(ih,it1)+(1.-a)*m(iv,itau)

if(c.eq.’f’) d(ih,it2) = d(ih,it2)+ a *m(iv,itau)

endif

enddo ! end offset loop

enddo ! end velocity loop

enddo ! end tau loop

return

end
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7.7 High Resolution Radon Transform

We can contruct a solutionm that consists on a few isolated spikes in velocity

space. This is what we often call a sparse solution. We have already outlined

a procedure to compute sparse solutions using the Parabolic Radon trans-

form. In that case the spareness constraint was used to invert the Radon

operator in the frequency domain. When using hyperbolic Radon trans-

forms, the sparseness constraint has to be imposed in the τ − v domain. In

general one can use any measure of sparseness (we have seen various norms

that can be used to retrieve sparse models when dealing with impedance in-

version in Chapter 4). Let’s assume that we use a Cauchy-like norm (Sacchi

and Ulrych, 1995). In this case we minimize

J = ||Lm− d||22 + µ
∑

k

ln(1 +m2
k/b) (7.72)

where mk indicates an element of m(τ, v) after lexicographic arrangement

(transformation of a matrix into a vector). The parameters µ and b are the

hyper-parameters of the problem.

Taking derivatives of J with respect to mk and equation them to zero leads

to the following system

LT Lm− LT d+Qm = 0 (7.73)

where Q is a diagonal matrix with elements given by

Qi =
2µ

b+m2
i

It is clear that the system needs to be solved in an iterative manner (Q

depends on the unknown model m). We can rewrite our solution as follows:

mk = (LT L+Qk−1)−1 LTd . (7.74)

where k indicates the iteration. The matrix of weights Q is computed from

the result of the previous iteration. In general, one solve the problem for a

given matrix of weights Q using CG, then after enough iteration to reach

convergence, Q is updated and a CG is run again to solve the linear problem.

The procedure is continues until we find the minimum of the cost function
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Figure 7.10: CMP gather # 1000 from a data set from the Gulf of Mexico.

J . This algorithm can be very expensive, and in general a good felling for

the µ and b is required to reach a sparse solution. When working with real

data the parameters needed for the inversion (µ, b, number of iterations) are

estimated by trial an error from a single CMP gather, the same parameters

are used to invert the rest of the CMPs in the seismic volume.

In Figures (7.10), (7.11), (7.12), and (7.13) we test the high resolution hy-

perbolic Radon transform with a data set from the Gulf of Mexico (data

provided by Western Geophysical to test multiple attenuation codes).
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Figure 7.11: Velocity panel obtained by inversion of the Hyperbolic Radon
transform using least-squares. CMP gather # 1000 from a data set from
the Gulf of Mexico.
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Figure 7.12: Velocity panel obtained by inversion of the Hyperbolic Radon
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Figure 7.13: Stack section of the Gulf of Mexico data set before multiple
removal.
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Figure 7.14: Stack section after multiple removal.
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7.8 Interpolation problems

The parabolic and hyperbolic Radon transform can be used to interpolate

CMP gathers. This is quite simple and, basically, entails mapping back the

velocity stack to a data space using a new geometry. To interpolate pre-

stack data in receiver-source space (or midpoint-offset) a more sophysicated

approach is required. Various research group in the area of signal analysis

have proposed algorithms to interpolate 1D data. These algorithms assume

that the data are band-limited. One can extend these ideas to the problem

of reconstructing pre-stack data. In geophysics Duijndam et. al (1999) and

Hindriks et. al (1997) have introduced a least-squares algorithm to invert

the fourier transform of the data. We will review some basic features of these

algorithms and introduce a regularization term that enables us to recover

large gaps in our pre-stack data set.

We define the discrete 2-D inverse Fourier transformation in source and

receiver coordinates as

u(xs, xr, ω) =
1

MN

M−1∑

m=0

N−1∑

n=0

U(ks(m), kr(n), ω)ejks(m)xsejkr(n)xr , (7.75)

where xs and xr are the spatial variables along source and receiver coordi-

nates, ks and kr are the corresponding wave-numbers and ω is the temporal

frequency. Equation (7.75) gives rise to a linear system equations

u = AU (7.76)

where

Amn =
1

MN
ejks(m)xsejkr(n)xr , (7.77)

u and U denote the known data and unknown coefficients of the DFT, re-

spectively.

Therefore, the interpolation problem can be posed as finding, from the in-

complete data, the 2D-DFT (U) by solving

u = AU + n (7.78)
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where n denotes the noise in the data. A unique solution may be obtained

by minimizing the following expression

J =‖ AU − u ‖2
2 +ǫ ‖ U ‖2

2 (7.79)

and the solution can be shown to take the form:

Û = (ATA+ ǫI)−1ATu, (7.80)

where T denotes the transpose of a matrix.

Next, we derive a similar result but using a weighted DFT-domain norm

introduced in the previous section. In this case the function to be minimized

is

J =‖ AU − u ‖2
2 +ǫ ‖ U ‖2

P (7.81)

The solution takes the form:

Û = (ATA+DI)−1ATu, (7.82)

where D is a diagonal matrix with diagonal elements corresponding to ǫ
|P (ks,kr)|2

and |P (ks, kr)|2 is a vector that contains the amplitude spectrum of U in

lexicographic form . Ideally, one should know the amplitude spectrum of

the data. Unfortunately, U is the unknown of our problem. The latter can

be overcome by defining an initial D in terms of the DFT of the irregularly

sampled data ATu and smoothing the result to attenuate the artifacts in-

troduced by the irregularity of u (Ning and Nikias, 1990).

The scheme can be summarized as follows:

• Start with an initial Û .

• Compute D = S(Û∗Û) , where S is a smoothing filter.

• Solve Û = (ATA+DI)−1ATu using Conjugate Gradients.

• Iterate until convergence.
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An example of reconstruction is demonstrated on 15 synthetic shot gathers.

Figure 7.15 shows six of the shot gathers with the shots #3 and #7 re-

moved. The reconstruction is performed using the minimum weighted norm

method with adaptive weights. Figure 7.16 shows the reconstructed shot

gathers (only six shots are shown). The missing shots have been completely

reconstructed.
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Figure 7.15: Six shot gathers with shots #3 and #7 removed.

Figure 7.16: Reconstructed shot gathers using the minimum weighted norm
algorithm.
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