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1. Introduction

An important aspect of the physical sciences is to make inferences about
physical parameters from data. In general, the laws of physics provide the
means for computing the data values given a model. This is called the
“forward problem”, see figure 1. In the inverse problem, the aim is to
reconstruct the model from a set of measurements. In the ideal case, an
exact theory exists that prescribes how the data should be transformed in
order to reproduce the model. For some selected examples such a theory
exists assuming that the required infinite and noise-free data sets would
be available. A quantum mechanical potential in one spatial dimension can
be reconstructed when the reflection coefficient is known for all energies
[Marchenko, 1955; Burridge, 1980]. This technique can be generalized for
the reconstruction of a quantum mechanical potential in three dimensions
[Newton, 1989], but in that case a redundant data set is required for rea-
sons that are not well understood. The mass-density in a one-dimensional
string can be constructed from the measurements of all eigenfrequencies of
that string [Borg, 1946], but due to the symmetry of this problem only the
even part of the mass-density can be determined. If the seismic velocity
in the earth depends only on depth, the velocity can be constructed ex-
actly from the measurement of the arrival time as a function of distance

0Present address of R. Snieder: Dept. of Geophysics, Colorado School of Mines, Golden
CO 80401, USA

0Reprinted from “Wavefield Inversion”, Ed. A. Wirgin, Springer Verlag, New York,
p. 119-190, 1999.
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Figure 1. The traditional definition of the forward and inverse problems.

of seismic waves using an Abel transform [Herglotz, 1907; Wiechert, 1907].
Mathematically this problem is identical to the construction of a spheri-
cally symmetric quantum mechanical potential in three dimensions [Keller
et al., 1956]. However, the construction method of Herglotz-Wiechert only
gives an unique result when the velocity increases monotonically with depth
[Gerver and Markushevitch, 1966]. This situation is similar in quantum
mechanics where a radially symmetric potential can only be constructed
uniquely when the potential does not have local minima [Sabatier, 1973].

Despite the mathematical elegance of the exact nonlinear inversion
schemes, they are of limited applicability. There are a number of reasons
for this. First, the exact inversion techniques are usually only applicable
for idealistic situations that may not hold in practice. For example, the
Herglotz-Wiechert inversion presupposes that the velocity in the earth de-
pends only on depth and that the velocity increases monotonically with
depth. Seismic tomography has shown that both requirements are not met
in the earth’s mantle [Nolet et al., 1994]. Second, the exact inversion tech-
niques often are very unstable. The presence of this instability in the solu-
tion of the Marchenko equation has been shown explicitly by Dorren et al.
[1994]. However, the third reason is the most fundamental. In many inverse
problems the model that one aims to determine is a continuous function of
the space variables. This means that the model has infinitely many degrees
of freedom. However, in a realistic experiment the amount of data that
can be used for the determination of the model is usually finite. A simple
count of variables shows that the data cannot carry sufficient information
to determine the model uniquely. In the context of linear inverse problems
this point has been raised by Backus and Gilbert [1967, 1968] and more re-
cently by Parker [1994]. This issue is equally relevant for nonlinear inverse
problems.

The fact that in realistic experiments a finite amount of data is available
to reconstruct a model with infinitely many degrees of freedom necessarily
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means that the inverse problem is not unique in the sense that there are
many models that explain the data equally well. The model obtained from
the inversion of the data is therefore not necessarily equal to the true model
that one seeks. This implies that the view of inverse problems as shown in
figure 1 is too simplistic. For realistic problems, inversion really consists
of two steps. Let the true model be denoted by m and the data by d.
From the data d one reconstructs an estimated model m̃, this is called the
estimation problem, see figure 2. Apart from estimating a model m̃ that
is consistent with the data, one also needs to investigate what relation the
estimated model m̃ bears to the true model m. In the appraisal problem one
determines what properties of the true model are recovered by the estimated
model and what errors are attached to it. The essence of this discussion is
that inversion = estimation + appraisal. It does not make much sense to
make a physical interpretation of a model without acknowledging the fact
of errors and limited resolution in the model [Trampert, 1998].

Data d

True model m Forward problem

Estimation problem

Appraisal problem

mEstimated model ~

Figure 2. The inverse problem viewed as a combination of an estimation problem plus
an appraisal problem.

In general there are two reasons why the estimated model differs from
the true model. The first reason is the non-uniqueness of the inverse prob-
lem that causes several (usually infinitely many) models to fit the data.
Technically, this model null-space exits due to inadequate sampling of the
model space. The second reason is that real data (and physical theories
more often than we would like) are always contaminated with errors and
the estimated model is therefore affected by these errors as well. Therefore
model appraisal has two aspects, non-uniqueness and error propagation.

Model estimation and model appraisal are fundamentally different for
discrete models with a finite number of degrees of freedom and for con-
tinuous models with infinitely many degrees of freedom. Also, the problem
of model appraisal is only well-solved for linear inverse problems. For this
reason the inversion of discrete models and continuous models is treated
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separately, and the case of linear inversion and nonlinear inversion is also
treated independently. In section 2 linear inversion for a finite number of
model parameters is discussed. This is generalized in section 3 to deal with
linear inverse problems for continuous models with infinitely many degrees
of freedom. In reality many inverse problems are not really linear, but of-
ten these problems can be linearized by making a suitable approximation.
In section 4 the single-scattering approximation is derived. This technique
forms the basis of imaging tools used in reflection seismology. Rayleigh’s
principle, as treated in section 5, is the linearization that forms the basis
for the inversion for the Earth’s structure using normal-mode frequencies.
The linearization technique of seismic travel time tomography is based on
Fermat’s principle, which is treated in section 6. Nonlinear inverse prob-
lems are significantly more difficult than linear inverse problems. It is shown
in section 7 that non-linearity can be a source of ill-posedness. Presently,
there is no satisfactory theory for the appraisal problem for nonlinear in-
verse problems. In section 8 three methods are presented that can be used
for the nonlinear appraisal problem. However, neither of these methods is
quite satisfactory, which indicates that nonlinear inverse problem theory is
a field with important research challenges.

2. Solving finite linear systems of equations

As argued in the previous section, the inverse problem maps a finite num-
ber of data onto a model. In most practical applications in geophysics the
model is a continuous function of the space coordinates and therefore has
infinitely many degrees of freedom. For the moment we will ignore this and
will assume that the model can be characterized by a finite number of pa-
rameters. We will return to the important case of models that are infinitely
dimensional in section 3.

2.1. LINEAR MODEL ESTIMATION

For a finite-dimensional model, the model parameters can be ordered in a
vectorm, and similarly the data can be ordered in a vector d. The matrixA
relates the data to the model through the productAm. This matrix is often
referred to as the theory operator. Indeed, it contains all the information
on physics and mathematics we have chosen to model in the given problem.
In practice, the data are contaminated with errors e, so that the recorded
data and the model are related by:

d = Am+ e (1)
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It should be noted there often there is an certain arbitrariness in the choice
of the model parameters that are contained in the model vector m. For
example, if one wants to describe the density in the earth one could choose
a model where the Earth’s mantle and the core have a uniform density, in
that case there are two model parameters. Alternatively, one could expand
the density in the Earth in a large amount of eigenfunctions defined on the
sphere such as spherical harmonics for lateral variations and polynomials
for depth variations, in that case there are much more model parameters.
These two different parameterizations of the same model correspond to
different model parameters m and to a different matrix A. This example
illustrates that the model m is not necessarily the true model,1 but that
the choice of the model parameters usually contains a restriction on the
class of models that can be constructed. Below we will refer to m as the
true model regardless of the difficulties in its definition.

From the recorded data one makes an estimate of the model. Since this
estimate in practice will be different from the true model the estimated
model is denoted by m̃. There are many ways for designing an inverse
operator that maps the data on the estimated model [e.g. Menke, 1984;
Tarantola, 1987; Parker, 1994]. Whatever estimator one may choose, the
most general linear mapping from data to the estimated model can be
written as:

m̃ = A−gd (2)

The operator A−g is called the generalized inverse of the matrix A. In
general, the number of data is different from the number of model parame-
ters. For this reason A is usually a non-square matrix, and hence its formal
inverse does not exist. Later we will show how the generalized inverse A−g

may be chosen, but for the moment A−g does not need to be specified. The
relation between the estimated model m̃ and the true model m follows by
inserting (1) in expression (2):

m̃ = A−gAm+A−ge (3)

The matrix A−gA is called the resolution kernel, this operator is given
by:

R ≡ A−gA (4)

1We urge the reader to formulate a definition of the concept “true model.” It is not
so difficult to formulate a vague definition such as “the true model is the model that
corresponds to reality and which is only known to the gods.” However, we are not aware
of any definition that is operational in the sense that it provides us with a set of actions
that could potentially tell us what the true model really is.
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Expression (3) can be interpreted by rewriting it in the following form:

m̃ = m+
(
A−gA− I)m︸ ︷︷ ︸

Limited Resolution

+ A−ge︸ ︷︷ ︸
Error propagation

(5)

In the ideal case, the estimated model equals the true model vector: m̃ = m
meaning that our chosen parameters, ordered in vector m, may be es-
timated independently from each other. The last two terms in equation
(5) account for blurring and artifacts in the estimated model. The term(
A−gA− I)m describes the fact that components of the estimated model

vector are linear combinations of different components of the true model
vector. We only retrieve averages of our parameters and “blurring” occurs
in the model estimation as we are not able to map out the finest details.
In the ideal case this term vanishes; this happens when A−gA is equal to
the identity matrix. With (4) this means that for perfectly resolved model
parameters the resolution matrix is the identity matrix:

Perfect resolution: R = I (6)

As noted earlier, usually there is a certain ambiguity in the definition of
the model parameters that define the vector m. The resolution operator
tells us to what extend we can retrieve the model parameters independently
from the estimation process. However, the resolution matrix does not tell
us completely what the relation between the estimated model and the real
underlying physical model is, because it does not take into account to what
extent the choice of the model parameters has restricted the model that
can be obtained from the estimation process.

The last term in (5) describes how the errors e are mapped onto the
estimated model.2 These errors are not known deterministically, otherwise
they could be subtracted from the data. A statistical analysis is needed
to describe the errors in the estimated model due to the errors in the
data. When the data dj are uncorrelated and have standard deviation σdj ,
the standard deviation σmi in the model estimate m̃i, resulting from the
propagation of data errors only, is given by:

σ2
mi =

∑

j

(
A−gij σdj

)2
(7)

Ideally, one would like to obtain both: a perfect resolution and no errors
in the estimated model. Unfortunately this cannot be achieved in practice.
The error propagation is, for instance, completely suppressed by using the

2As shown by Scales and Snieder [1998] the concept of errors in inverse problems is
not as simple as it appears.
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generalized inverse A−g = 0. This leads to the (absurd) estimated model
m̃ = 0 which is indeed not affected by errors. However, this particular
generalized inverse has a resolution matrix given by R = 0, which is far
from the ideal resolution matrix given in (6). Hence in practice, one has to
find an acceptable trade-off between error-propagation and limitations in
the resolution.

2.2. LEAST-SQUARES ESTIMATION

Let us for the moment consider the case where the number of independent
data is larger than the number of unknowns. In that case, the system d =
Am cannot always be satisfied for any given model m because of possible
errors contained in the data vector making the equations inconsistent. As
an example, let us consider the following problem. We have two masses
with weight m1 and m2. The weighing of the first mass yields a weight of 1
(kilo). Then one measures the second mass to find a weight of 2. Next, one
weighs the masses together to find a combined weight of 2. The system of
equations that corresponds to these measurements is given by:

m1 = d1 = 1
m2 = d2 = 2

m1 +m2 = d3 = 2
(8)

The matrix A for this problem is given by:

A =




1 0
0 1
1 1


 (9)

It is clear that this system of equations cannot be satisfied. It cannot be
true that the first mass has a weight m1 = 1, and the second mass has
a weight m2 = 2 while the combined mass is equal to m1 + m2 = 2.
Clearly errors have been made during the measurements, but there is no
reason to discard one of the three equations in favor of the other two.
This problem is illustrated graphically in figure 3. The three equations (8)
correspond to the three solid lines in the (m1,m2)-plane. The fact that
the three lines do not intersect in a single point signifies that the linear
equations are inconsistent. The inverse problem of determining the two
masses thus consists in reconciling these equations in a meaningful way.

A common way to estimate a model is to seek the model m̃ that gives
the best fit to the data in the sense that the difference, measured by the
L2-norm, between the data vector d and the recalculated data Am̃ is made
as small as possible. This means that the least-squares solution is given by
the model that minimizes the following cost function:
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Figure 3. Geometrical interpretation of the linear equations (8).

S = ‖d− Am‖2 (10)

As shown in detail by Strang [1988] this quantity is minimized by the
following model estimate:

m̃ =
(
ATA

)−1
ATd (11)

In the example of figure 3 the least-squares solution is the point in the
(m1,m2)-plane that has the smallest distance to the three lines in that
figure, this point is indicated by a black square. Using the matrix (9) one
readily finds that the least-squares estimator of the problem (8) is given
by:

m̃ =
(
ATA

)−1
ATd =

1

3

(
2 −1 1
−1 2 1

)
d (12)

For the used data vector this means that the estimated model is given by:

m̃1 = 2/3
m̃2 = 5/3

(13)

2.3. MINIMUM NORM ESTIMATION

In some problems the number of unknowns is less than the number of
parameters. Consider for example the situation where there are two masses
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m1 andm2 and one has measured only the combined weight of these masses:

m1 +m2 = d = 2 (14)

The matrix that corresponds to this system of one equation is given by:

A =
(

1 1
)

(15)

Graphically this problem is depicted in figure 4. Clearly any model vector
lying on the solid line fits the equation (14) exactly. There are thus infinitely
many solutions, provided the masses are positive, that exactly fit the data.
A model estimate can be defined by choosing a model that fits the data
exactly and that has the smallest L2-norm, this model is indicated by in
figure 4 by the black square.
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Figure 4. Geometrical interpretation of the linear equation (14) with two unknowns.

For a general underdetermined system of equations the minimum norm
solution is defined as the model that fits the data exactly, Am = d, and
that minimizes ‖m‖2. Using Lagrange multipliers one can show that the
minimum-norm solution is given by:

m̃ = A
� (
AAT

)−1
d , (16)

a detailed derivation is given by Menke [1984]. One readily finds that the
minimum norm solution of “system” (14) is given by

m1 = m2 = 1 . (17)
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2.4. MIXED DETERMINED PROBLEMS

In the least-squares estimation, we assumed that we had enough informa-
tion to evaluate all model parameters, even though contradictions occurred
due to measurement errors. The problem is then purely over-determined
and as a consequence ATA is regular. In the minimum norm solution, we
assumed no contradictions in the available information, but we don’t have
enough equations to evaluate all model parameters. This is the case of
a purely under-determined problem and here AAT is regular. The most
common case, however, is that we have contradictory information on some
model parameters, while others cannot be assessed due to a lack of infor-
mation. Then neither ATA nor AAT can be inverted and the problem
is ill-posed. Even if the inverse matrices formally exist, they are often ill-
conditioned meaning that small changes in the data vector lead to large
changes in the model estimation. This means that errors in the data will
be magnified in the model estimation. Clearly a trick is needed to find a
model that is not too sensitive on small changes in the data. To this ef-
fect, Levenberg [1944] introduced a damped least-squares solution. From a
mathematical point of view, ill-posedness and ill-conditioning result from
zero or close to zero singular values of A.

Suppose one has a matrix M with eigenvalues λn and eigenvectors v̂n:

Mv̂n = λnv̂n (18)

One readily finds that the matrix (M+γI) has eigenvalues (λn + γ):

(M+γI) v̂n = (λn + γ) v̂n (19)

This means that the eigenvalues of a matrix can be raised by adding the
scaled identity matrix to the original matrix. This property can be used to
define the damped least-squares solution:

m̃ =
(
ATA+γI

)−1
ATd (20)

Since the matrix ATA has positive eigenvalues3 its eigenvalues are moved
away from zero when the constant γ is positive. Alternatively, the solution
(20) can be found by minimizing the following cost function:

3That the eigenvalues of � T � are positive follows from the following identity:( ��� � T � � ) =
( � TT ��� � � ) = ( � ��� � � ) = ‖ � � ‖2 ≥ 0. When

�
is the eigen-

vector ˆ� (n) of � T � with eigenvalue µn, this expression can be used to show that

µn
∥∥ˆ� (n)

∥∥2
= µn

(
ˆ� ( � )

�
ˆ� (n)

)
=
(

ˆ� ( � )
� � T � ˆ� (n)

)
≥ 0, hence the eigenvalues µn

are positive.
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S = ‖d− Am‖2 + γ ‖m‖2 (21)

This expression clearly shows what the effect of the damping is. Minimizing
the first term of (21) amounts to finding the model that gives the best
fit to the data. Minimizing the last term of (21) amounts to finding the
model with the smallest norm. In general we cannot minimize both terms
simultaneously, but in minimizing (21) we comprise in finding a model that
both fits the data reasonably well and whose model size is not too large. The
parameter γ controls the emphasis we put on these conflicting requirements
and for this reason it is called the trade-off parameter.

For a number of applications the following matrix identity is extremely
useful:4

(
ATB−1A+D−1

)−1
ATB−1=DAT

(
B +ADAT

)−1
. (22)

In this expression B and D are regular square matrices, whereas A needs
not to be square. This expression can be used to show that when damping
or regularization is used, the least-squares solution and the minimum-norm
solution (both supplied with a damping term) are identical. To see this use
(22) with B−1 = I and D−1 = γI . It then follows that

(
ATA+ γI

)−1
ATd =

1

γ
AT

(
I +A

1

γ
AT

)−1

d = AT
(
AAT + γI

)−1
d .

(23)
The left hand side corresponds to the damped least-squares solution (20)
while the right hand side is the damped version of the minimum-norm
solution (16). This implies that when damping is applied the least-squares
solution and the minimum-norm solution are identical.

2.5. THE CONSISTENCY PROBLEM FOR THE LEAST-SQUARES
SOLUTION

The least-squares solution appears to provide an objective method for find-
ing solutions of overdetermined problems. However, there is trouble ahead.
To see this, let us consider the overdetermined system of equations (8).

4This identity follows from the identity � T + � T 	 −1 ��
�� T = � T 	 −1 �
�� T +
� T . Write the first term on the left hand side as � T 	 −1 	 and the last term on
the right hand side as 
 −1 
�� T . The resulting expression can then be written as
� T 	 −1

( 	 + �
�� T ) =
( � T 	 −1 � + 
 −1

) 
�� T . The expression (22) then follows

by multiplying on the left with
( 	 + �
�� T )−1

and by multyplying on the right with( � T 	 −1 � + 
 −1
)−1

.
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Mathematically, this system of equations does not change when we mul-
tiply the last equation with a factor two. The following two systems of
equations thus are completely equivalent:

m1 = d1 = 1
m2 = d2 = 2

m1 +m2 = d3 = 2



⇔





m1 = d1 = d
′
1 = 1

m2 = d2 = d
′
2 = 2

2m1 + 2m2 = 2d3 = d
′
3 = 4

(24)

The matrices of the original system and the new equivalent system are
given by

A =




1 0
0 1
1 1


 and A

′
=




1 0
0 1
2 2


 (25)

In this section the unprimed quantities denote the original system of equa-
tions while the primed quantities refer to the transformed system of equa-
tions. One readily finds that the least-squares solution (11) of the original
system and the transformed system are given by

m̃ =
1

3

(
2 −1 1
−1 2 1

)
d and m̃ =

1

9

(
5 −4 2
−4 5 2

)
d
′
, (26)

Using the numerical values of the original data vector d and the transformed
data vector d′ this leads to the following estimates of the model:

m̃ =

(
2/3
5/3

)
and m̃ =

(
5/9
14/9

)
(27)

The problem is that these two estimators of the same model are dif-
ferent ! This is surprising because the original system of equations and the
transformed system of equations in (24) are mathematically equivalent. The
reason that the two solutions are different is that the metric in the origi-
nal data space and in the transformed data space has been changed by the
transformation. This is a different way of saying that distances are measured
in different ways in the least-squares criteria for solving the two systems
of equations. Since the least-squares solution minimizes distances it makes
sense that the least-squares solution changes when the metric (or measur-
ing unit) of the data space is changed. This implies that the least-squares
solution is not as objective as it appeared at first sight, because arbitrary
transformations of the system of equations lead to different least-squares
solutions!

For the least-squares solution the generalized inverse is given by A−g =(
ATA

)−1
AT . One readily deduces that both for the original system and
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the transformed system the resolution kernel is equal to the identity matrix:
R = A−gA = I and R

′
= A−g

′
A
′

= I . Hence both systems have perfect
resolution! The reader may be interested to pause and explain how this can
be reconciled with the fact that the estimated models in (27) are different.

The reason for this discrepancy lies in the error propagation term A−ge
in (5). We know that errors must be present in the data used in the systems
defined in expression (24) because the equations are inconsistent. After
scaling the equations, data and errors are reconciled in different ways in the
two systems of equations, so that different model estimators are obtained.
It is thus the presence of inconsistencies in the system of equations caused
by errors that creates a dependence of the least-squares solution to arbitrary
scaling operations.

Let us now consider the properties of the least-squares solution under
transformations of the data vector and the model vector in a more general
way. The initial system of equations is given by

Am = d (28)

This expression is not quite correct because we ignored the errors e which
will always be present. This is the reason why the above expression can
not exactly be satisfied, and we will have to seek the least-squares solution
to this system of equations. Let us consider a transformation of the model
parameters through a transformation matrix S:

m
′

= Sm , (29)

and a transformation of the data vector with a transformation matrix Q:

d
′

= Qd . (30)

Assume that S has an inverse, the transformed system of equations then is
given by

QAS−1m
′

= Qd = d′. (31)

The original system of equations (28) has the least-squares solution

m̃(1) =
(
ATA

)−1
ATd (32)

The solution of the transformed system of equations (31) follows from the

same expression, setting A
′

= QAS−1 and replacing d by Qd. This, how-
ever, gives the solution to the transformed model vector m

′
. In order to

compare this solution with the model estimate (32) we need to transform
back to the original model space, using the relation m = S−1m

′
. The
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least-squares solution m̃(2) that follows from the transformed system is
then given by:

m̃(2) = S−1
(
ST−1ATQTQAS−1

)−1
ST−1ATQTQd (33)

Assuming again that the appropriate inverses exist, this expression can be
simplified by repeatedly applying the matrix identity (NM )−1 = M−1N−1

to the term
(
ST−1ATQTQAS−1

)−1
, giving

(
ST−1ATQTQAS−1

)−1
=

(
S−1

)−1 (
ATQTQA

)−1 (
ST−1

)−1
= S

(
ATQTQA

)−1
ST . The least-squares

solution of the transformed system can then be written as:

m̃(2) =
(
ATQTQA

)−1
ATQTQd (34)

Comparing this with the least-squares solution m̃(1) in expression (32) of
the original system one finds that the least-squares solution is invariant for:

− Transformations of the model vector altogether.
− Transformations of the data vector if QTQ = I.

The first property can be understood if we recall that the cost function
in the least-squares problem does not minimize the model length but only
the data misfit. The last property can be understood by comparing the
quantities that are minimized in the original system and for the transformed
system. For the original system one minimizes:

S = ‖d−Am‖2 = ((d−Am) · (d− Am)) , (35)

while in the transformed system one minimizes

S′ = ‖Qd−QAm‖2 = (Q (d− Am) ·Q (d− Am))
= (QTQ (d− Am) · (d−Am))

(36)

These two quantities are identical when the transformationQ is unitary, i.e.
when QTQ = I . This result stems from the property that unitary matrices
do not affect the norm of a vector.

2.6. THE CONSISTENCY PROBLEM FOR THE MINIMUM-NORM
SOLUTION

Consistency problems do not only arise for the least-squares solution, the
minimum-norm solution suffers from the same problem. As an example
let us return to the underdetermined “system” of equations (14). The
minimum-norm solution of this problem is given by
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m̃1 = 1 , m̃2 = 1 (37)

Now carry out a transformation from the model vector m to a new model
vector m

′
:

m
′
1 = m1 +m2

m
′
2 = m2

(38)

For this new model vector the “system” of equations is given by:

m̃′1 = d = 2 (39)

Note that this transformed model vector brings out the fact that the system
is undetermined much more clearly than the original system (14) because
the new system imposes no constraint whatsoever on the model parame-
ter m

′
2. The minimum-norm solution of the transformed equation (39) is

given by m̃
′
1 = 2, m̃

′
2 = 0. With the transformation (38) this solution in

the transformed model space corresponds to the following solution in the
original model space:

m̃1 = 2 , m̃2 = 0 (40)

This solution is shown by the open square in figure 4. Note that this solution
differs from the minimum-norm solution (37) for the original system of
equations. The reason for this discrepancy is similar to the consistency
problem for the least-squares problem in section 2.5; the transformation
(38) has changed the metric of model space, so that distances in the original
model space and the transformed model space are measured in different
ways. For this reason the minimum norm solution of the original problem
and transformed problem are different.

We could carry out a similar general analysis for the transformation
properties of the minimum norm solution under general transformations of
the model vector and data vector as we carried out for the least-squares
solution in section 2.5. However, in practice one applies regularization to
the equations. As shown in equation (23) the damped least-squares solution
and the damped minimum-norm solution are identical. For this reason the
general transformation properties are treated in the next section for the
damped least-squares solution.

2.7. THE NEED FOR A MORE GENERAL REGULARIZATION

The analysis of the transformation properties of the damped least-squares is
completely analogous to the analysis of the undamped least-squares solution
of section 2.5. Ignoring errors for the moment, the linear system of equations
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is given by (28): Am = d, and the transformation of the model vector and

data vector is given by (29) and (30) respectively: m
′

= Sm and d
′

= Qd.
Assuming again that S−1 exists, the transformed system of equations is
given by (31): QAS−1m

′
= Qd.

The damped least squares solution of the original system is given by:

m̃(1) =
(
ATA+γI

)−1
ATd (41)

Analogously to (34) the damped least-squares solution of the transformed
equations is given by:

m̃(2) = S−1
(
ST−1ATQTQAS−1 + γI

)−1
ST−1ATQTQd (42)

The damping parameter here is not necessarily equal to the damping pa-
rameter in the original damped least-squares solution, but for our purpose
we do not need to make the distinction. Expression (42) can be simplified
using the same steps as in the derivation of (34). Writing the term γI as
γI =γST−1STSS−1, it follows that

m̃(2) =
(
ATQTQA+γSTS

)−1
ATQTQd (43)

This expression points to a fundamental problem: the damping term
in the model space m

′
is given by the identity matrix γI (see (42)) and

the damping term is γSTS when expressed in terms of the original model
vector m (see (43)). This implies that the damping γI is not invariant for
transformations of the model parameters. The terms QTQ appear when
a transformation of the data vector is carried out. This implies that the
damped least-squares solution is in general not invariant under transfor-
mations of the data vector or model vector.

There is therefore a need for a more general regularization which allows
to change model and data space in a consistent manner so that the solution
is coordinate independent. Such a general regularization can be found from
(43) by setting QTQ = W d and by defining STS = Wm. The general
least-squares solution is then given by:

m̃ =
(
ATW dA+γWm

)−1
ATW dd . (44)

This solution minimizes the following cost function:

S = (d−Am)T W d (d−Am) + γmTWmm (45)

This expression shows that in general the weight matrices W d and Wm

can be anything (as long as they are positive definite to ensure that S
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has minima). Written in this way, γ may be seen as a trade-off parameter
which compromises between two characteristics of the model: its size and
its disagreement with the data. Both independent properties of the model
cannot be arbitrary small together, hence there is a need for a balance.
The choice of an optimum γ, however, is not an easy question. We have
shown explicitly that when you start with a simple damped least-squares
solution you can transform that problem into a more generally regularized
least-squares solution in a different coordinate system and vice versa.

This implies that there is no reason to favor the damped least-squares
solution over the more general least-squares solution (44). In fact, most
inverse problems are ill-posed (partly underdetermined and partly overde-
termined) and ill-conditioned (small errors in the data causes large vari-
ations in the model) which goes hand in hand with large null-spaces and
hence non-unique solutions. Regularization is thus needed, but there is a
large ambiguity in its choice [Scales and Snieder, 1997]. This reflects the
fundamental difficulty that one faces in solving inverse problems: solving
the system of equations is a minor problem, compared to choosing the reg-
ularization.

One approach is to use Bayesian statistics where one treats the inverse
problem from a statistical point of view combining a-priori information
about the data and the model with the data that are actually measured
[Tarantola and Valette, 1982a; Tarantola and Valette, 1982b]. The weight
matrices reflect true physical a-priori information (in a statistical sense)
that one has of the data and the model, independent of the measured data.
This includes for example the statistical noise characteristics of the instru-
ment that produced the data, as well as information of the model and data
that follow from other arguments. (For example, the mass-density in the
Earth must be positive.) In such a Bayesian approach the weight matrices
are given by

W d = C−1
d , γWm = C−1

m , (46)

where C−1
d and C−1

m are the a-priori covariance matrices for the data and
model respectively:

Cd =
〈

(d− 〈d〉) (d− 〈d〉)T
〉
, (47)

Cm =
〈

(m− 〈m〉) (m− 〈m〉)T
〉
. (48)

In these expressions the brackets 〈· · ·〉 denote the expectation value. In
this interpretation the estimator (44) corresponds to the most likely a-
posteriori model when the error distribution is Gaussian. The statistical
basis of Bayesian inversion leads to an objective solution if one respects the
rule that the a-priori information has a true physical meaning. In practice
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however, one should realize that the choice of the a-priori distribution of
the data and model is very often subjective as well. The reader can find
further details in the column “To Bayes or not to Bayes” of Scales and
Snieder [1997].

A different approach is to define the misfit function in such a way that
it favours models with given properties (small, smooth, ...) [Parker, 1994].
Choosing a-priori information then amounts to defining an appropriate
norm in which the data misfit and any given property of the model are
measured. In our case, the weight matrices would then define a particular
metric for the L2-norm. As an example of choosing the weight matrices
Wm the use of Occam’s inversion is quite common [Constable et al., 1987]
where one seeks the smoothest model that is consistent with the data. In-
stead of putting a constraint on the model length, one seeks the square of
its gradient to be as small as possible, i.e. the last term in (45) is a dis-
cretization of ‖5m‖2 =

∫
(5m · 5m) dV = − ∫ m52 m dV ,5 and hence

Wm corresponds to a discretized form of the Laplacian −52.

2.8. THE TRANSFORMATION RULES FOR THE WEIGHT MATRICES

One of the fundamental requirements of an inverse solution should be that
the results of the inversion are independent of arbitrary scalings applied
to the model vector or data vector. Alas, this requirement is often ignored
which can render comparisons of different models quite meaningless. For
practical implications see Trampert and Lévêque [1990] and Trampert et
al. [1992]. Here we derive how the weight matrices Wm and W d should
scale under such transformations for the least-squares solution to remain
invariant.

Let us first consider the scaling (29) of the model vector: m
′

= Sm.
Under this transformation the model term in the least-squares quantity
(45) transforms as

mTWmm = m
′TST−1WmS

−1m
′

= m
′TW

′
mm

′
, (49)

with

W
′
m = ST−1WmS

−1 . (50)

Under this transformation rule for the model weight matrix the least-
squares criterion is unchanged, hence the least-squares solution is not changed
when the model weight matrix Wm is transformed. It is of interest to note

5Note that we tacitly assumed in the last identity that there are no nonzero terms
arising from the boundary conditions. A formal treatment based on Green’s theorem
allows for the incorporation of nonzero boundary terms.
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that this rule implies that for Bayesian inversions, where the weight matrix
is the inverse of the a-priori model covariance matrix (γWm = C−1

m ), the
covariance matrix should transform as

C
′
m = SCmS

T (51)

One easily verifies from definition (48) that this is indeed the transformation
rule for covariance operators.

Next let us consider how the transformation (30) for the data vector d
′

=
Qd affects the transformation of the data weight matrix W d. The matrix
A scales under this transformation as A

′
= QA. Under this transformation

the data term in the least-squares quantity (45) transforms as

(d−Am)T W d (d− Am)

=
(
d
′−A′m

)T
QT−1W dQ

−1
(
d
′−A′m

)

=
(
d
′−A′m

)T
W
′
d

(
d
′−A′m

) (52)

with

W
′
d = QT−1W dQ

−1 . (53)

For a Bayesian inversion the data weight matrix is the inverse of the data
covariance matrix (W d = C−1

d ), so that for a Bayesian inversion Cd should
transform as

C
′
d = QCdQ

T . (54)

Note again that this is the correct transformation rule for a covariance
matrix defined in (47). This implies that the Bayesian viewpoint, where
Wm and W d are the inverses of the model and data covariance matrices,
ensures that the solution is invariant under transformations of the model
vector and/or the data vector.

Although we have derived in which way the weight matrices Wm and
W d should transform under transformations of model and data vectors, this
does by no means imply that these matrices can be defined in a unambigu-
ous way. An ill-posed and/or ill-conditioned inverse problem can only be
solved if one is willing to control the solution by imposing a regularization
term. In general, there is no unique recipe for choosing the weight matrices
Wm and W d. It is the subjective input of the user that determines the
choice of these matrices.

2.9. SOLVING THE SYSTEM OF LINEAR EQUATIONS

It should be noted that the least-squares solution always requires solving a
set of linear algebraic equations. For instance, equation (44) may be written
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as (
ATW dA+γWm

)
m̃ = ATW dd . (55)

This represents a square system of linear equations, the so-called normal
equations, of the form Bx = y. If we are merely interested in the esti-
mation part of the problem, B doesn’t need to be inverted. If we are also
interested in the appraisal part of the problem (and we always should), it
must be realized that B needs to be inverted at the cost of additional com-
puter time. Many standard subroutine packages are available and Press et
al. [1989] give a good and practical introduction to the subject. The reader
should realize, however, that the system Bx = y may become quite large
for realistic geophysical problems which makes it worthwhile to consider
a specialized routine best suited to the nature of B (symmetric, banded,
sparse, ...). The dimension of the set of normal equations is also worth
considering. Remember that the matrix A has the dimension (N ×M),
where N is the number of data and M the number of model parameters.
System (55) has the dimension of the model space, but using (22) we may
obtain a strictly equivalent system of the dimension of the data space.
Choosing the smallest dimension to write the normal equation can save
quite some computer time. Most techniques for solving the set of algebraic
equations directly work with the matrix B as a whole requiring sufficient
memory space to hold the matrix. But in global travel time tomography,
for instance, these dimensions may become extremely large (N > 106 and
M > 105) so that iterative methods need to employed which only work
on parts of B at a time. Another problem which frequently occurs is that
even though regularization is included in B, it is singular or numerically
very close to singular. A powerful technique, called Singular Value Decom-
position (SVD), can diagnose precisely what the problem is and will give
a useful numerical answer. SVD is the most effective tool in inverse theory
to understand why a certain result has been obtained.

Iterative methods or SVD need not to work on square systems and may
thus directly use the matrix A. In this context it is useful to realize that
the generalized least squares solution (44) is equivalent to the simple least
squares solution of the system




W
1/2
d A
· · ·√

γ W 1/2
m


m =



W

1/2
d d
· · ·
0


 . (56)

For a discussion on the meaning of a square root of a positive definite
matrix the reader is referred to Tarantola [1987]. Keeping also in mind a
certain freedom in choosing weighting matrices (see 2.7), the user might

want to define directly W 1/2 rather than W . Expression (56) shows that
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regularization has the effect of adding extra rows to the system of linear
equations, but the enlarged system is still of the form Bx = y, where the
matrix A and the data vector d are augmented by extra rows that account
for the regularization. B is not square anymore as in the case of normal
equations. We will now illustrate in more detail the essence of singular value
decomposition and iterative techniques as applied to the system Bx = y.

2.9.1. Singular value decomposition
Singular value decomposition was developed by Lanczos [1961], this tech-
nique is a generalization of the eigenvector decomposition of matrices to
non-square matrices. Let us first consider a real symmetric N × N -square
matrix B with eigenvectors v̂(n) and eigenvalues λn. For such a matrix the
eigenvectors form an orthonormal set, hence any vector x can be projected

on these eigenvectors: x =
∑N
n=1 v̂

(n)
(
v̂(n) · x

)
. When B acts on this ex-

pression the result can be written as:

Bx =
N∑

n=1

λnv̂
(n)
(
v̂(n) · x

)
= y . (57)

Decomposing the vector y using the same eigenvectors v̂(n) gives y =∑N
n=1 v̂

(n)
(
v̂(n) · y

)
, and inserting this into expression (57) yields the fol-

lowing expansion for the solution vector x:

x =
N∑

n=1

1

λn
v̂(n)

(
v̂(n) · y

)
. (58)

It can be seen that small eigenvectors can lead to instabilities in the solution
x. Singular value decomposition generalizes this expansion to non-square
matrices. Details of this technique are given by Lanczos [1961] and by Aki
and Richards [1980].

Now consider the following non-square system of equations:

B︸︷︷︸
N ×M
matrix

x︸︷︷︸
M
rows

= y︸︷︷︸
N
rows

(59)

Singular value decomposition is based on an expansion of x in an orthonor-
mal set of eigenvectors v̂(n) and of y in an orthonormal set û(n). These
vectors cannot be the eigenvectors of B because this matrix is not square,
hence it does not have any eigenvectors. Instead, these vectors are related
by the following relation:
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Bv̂(n) = λnû
(n) , BT û(n) = λnv̂

(n) (60)

It can easily be seen that the vectors v̂(n)are the eigenvectors of BTB
while the vectors û(n) are the eigenvectors of BBT , hence these vectors can
readily be determined.BTB andBBT share the same nonzero eigenvectors
λ2
n. The λn are called the singular values of B. When B acts on the vector
x the result can be written as

Bx =
P∑

n=1

λnû
(n)
(
v̂(n) · x

)
. (61)

The upper limit of the summation is determined by the number of eigenval-
ues that are nonzero because the vanishing eigenvalues do not contribute
to the sum. This number P can be significantly less than the dimension of
the problem: P ≤ N and P ≤M .

It is convenient to arrange the vectors û(n) and v̂(n) as the columns of
matrices U and V , the eigenvectors from index P onwards correspond to
zero eigenvalues and need to be included to make U and V complete:

U =




...
...

...

û(1) û(2) · · · û(P )

...
...

...
︸ ︷︷ ︸

U p

...
...

û(P+1) · · · û(N)

...
...

︸ ︷︷ ︸
U 0




, (62)

V =




...
...

...

v̂(1) v̂(2) · · · v̂(P )

...
...

...
︸ ︷︷ ︸

V p

...
...

v̂(P+1) · · · v̂(M)

...
...

︸ ︷︷ ︸
V 0




, (63)

The orthogonality of the eigenvectors implies thatUTU = I and V TV = I .
The completeness of the eigenvectors implies that UUT = I and V V T =
I . Since the orthogonality of the eigenvectors also holds in the subspaces
spanned by Up and V p we have UT

pUp = I and V T
p V p = I. However, the

vectors in these subspaces do in general not form a complete set, so that in
general UUT

p 6= I and V V T
p 6= I

The generalization of (61) to non-square systems can be written as
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B =
(
Up U0

) ( Σ 0
0 0

)(
V T
p

V T
0

)
, (64)

where the matrix Σ is given by:

Σ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 λp


 (65)

It follows from (61) that the eigenvectors û(n) that correspond to a vanish-
ing eigenvalue do not contribute when B acts on a vector. These eigenvec-
tors are ordered in the sub-matrix U 0.This is equivalent to the statement
that according to the representation (64) the matrix B can be constructed
from Up and V p alone. U0 and V 0 are dark spots of the space not il-

luminated by operator B. Since UT
0Bx = 0 the predicted data Bx are

orthogonal to the subspace spanned by U 0, see figure 5. This means that
any components in the data vector that lie in U 0 cannot be explained by
any model. These components of the data vector necessarily correspond to
errors in the data or errors in the operatorB as a description of the physical
problem. It is for this reason that U 0 is called the data-null-space. In a least
squares inversion one aims at minimizing the data misfit. Minimizing the
data misfit then amounts to finding a model that produces a data vector
in the subspace Up that is closest to the true data. It follows from figure 5
that this is achieved by simply projecting the components of U 0 contained
in the data out of the problem. This is exactly what is done by limiting
the sum over eigenvalues in (64) to the nonzero eigenvalues only. Of course,
when U0 is empty, one can always find x which explains the data y exactly
because Up spans the complete data space.

In a similar way, the restriction of the summation over eigenvalues to
the nonzero eigenvalues has the effect that the model estimate lies in the
subspace spanned by V p, but that the estimated model has no component
in V 0. Any component of the model in V 0 does not affect the data because
BV 0= 0. This means that V 0 defines the model-null-space. The data have
no bearing on the components of the model vector that lie in V 0. Setting the
component of the model vector in the model-null-space equal to zero then
implies that in the model estimation one only takes the nonzero eigenvalues
into account. Expanding x in the vectors v̂(n) and y in the vectors û(n) and
taking only the nonzero eigenvalues into account one can thus generalize
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U

U

y

Bx

B

V

Vx

x
x-x

B
0

p

0

-g
p

y-Bx
p

p

Figure 5. Geometrical interpretation of singular value decomposition. Note that starting
from a model vector � and inverting the corresponding data ��� one obtains an estimated
model vector � p that in general differs from � because the resolution operator � = � −g �
in general is not equal to the identity matrix.

the solution (58) in the following way to non-square systems:

x =
P∑

n=1

1

λn
v̂(n)

(
û(n) · y

)
. (66)

Using the matrices U p and V p this result can also be written as:

x = V pΣ
−1UT

p y , (67)

with Σ−1 given by

Σ−1=




1/λ1 0 · · · 0
0 1/λ2 · · · 0
...

...
. . .

...
0 0 · · · 1/λp


 (68)

Similar to the forward problem, the inverse problem is not a function of U 0

and V 0. If both of these subspaces are zero, the operator B has an exact
inverse. If U 0 exists, one can show that the residual y − Bx is perpen-
dicular to Bx and hence the residual is minimum as for the least-squares
solution. If V 0 exists, solution (67) has no component in V 0 and is therefore
of minimum norm.

Clearly, small errors in y can lead to large errors in x when multiplied
with 1/λn and the singular value is small. This process of error magnifi-
cation can be controlled by limiting the summation in (66) to eigenvalues
that differ significantly from zero. Alternatively, one can replace 1/λn by
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λn/
(
λ2
n + γ

)
with γ a positive constant. One can show that this is equiva-

lent to the damped least-squares solution (20). See for example Matsu’ura
and Hirata [1982] for a discussion on these different strategies. It should
be noted that cutting off or damping small eigenvalues leads to different
results. This makes it virtually impossible to quantitatively compare so-
lutions of the same problem obtained with these fundamentally different
strategies. One of the main reasons for the popularity of singular value de-
composition is the control that one can exert over the error propagation in
the solution. The drawback is that one needs to determine the eigenvectors
of a matrix. For realistic large-scale problems (P > 104) this may require a
prohibitive amount of CPU time. On the other hand, once the eigenvectors
are calculated, resolution and error propagation are obtained at virtually
no cost, since they merely involve the matrix multiplication V pV

T
p .

2.9.2. Iterative least-squares
The least-squares solution of the system Bx = y is, as shown in (11), given

by x =
(
BTB

)−1
BTy. Note that the matrix B may contain some form of

regularization as seen in expression (56). In practice, given the large-scale
of many inverse problems, the matrix BTB may not fit in the computer
memory. It is for this reason that one has developed iterative techniques
which improve existing estimates of the solution.

Suppose one has in the n-th iteration of an iterative process a model
estimate xn and that one seeks an update δxn such that the new model
estimate xn+1 = xn + δxn is a better estimate of the model. Inserting
this expression into the relation Bx = y gives an expression for the model
update:

Bδxn = (y −Bxn) (69)

Note that the right hand side of this expression is the residual of the model
estimate xn, i.e. the difference y −Bxn, is a measure to what extend the
model estimate xn does not explain the data. Expression (69) prescribes
how the model should be updated in order to reduce the data residual. The
least squares-solution of this expression is given by

δxn =
(
BTB

)−1
BT (y −Bxn) (70)

However, we have not gained anything yet because this expression is just
as difficult to solve as the original equation and we still need to deal with
the inverse of BTB.

The advantage of solving the problem iteratively is that in such an ap-

proach one can replace the inverse
(
BTB

)−1
by a suitably chosen estimate
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P of this inverse, i.e. one computes a model update using the following ex-
pression:

xn+1 = xn + PBT (y −Bxn) (71)

The operator P is called a preconditioning operator. If one sets P =
(
BTB

)−1

one retrieves the full solution in one step, but in that case one needs to

compute
(
BTB

)−1
, which is what we wanted to avoid. Recognizing that

BT (y −Bxn) is the direction of descent of the cost function at xn, one
may, on the other end of the spectrum, choose P =cI , where c is a constant
derived from a least-squares criterion to ensure the steepest possible descent
[e.g. Tarantola, 1984]. In practice one has to find a balance between using an
advanced preconditioning operator (that may be difficult to compute but
that leads to a solution with a few iterations), and a simple preconditioning
operator (that is easy to compute but that may require many iterations).
The most commonly used algorithms in geophysics are SIRT (Simultaneous
Iterative Reconstruction Technique) and LSQR (Least-Squares Conjugate
Gradient). SIRT has the drawback of introducing implicit regularization
into the solution [van der Sluis and van der Vorst, 1987] and if corrected
for significantly decreases the convergence speed [Trampert and Lévêque,
1990]. A more successful balance is achieved by the LSQR algorithm [Paige
and Saunders, 1982a, 1982b; van der Sluis and van der Vorst, 1987]. An
iterative scheme that mimics the properties of SVD is given by Nolet and
Snieder [1990].

Note that in the iterative least-squares algorithm (71) there is no need
to invert a matrix, one only needs to multiply with the matrices P and BT ,
which can be done row by row. In many practical problems such as seismic
tomography, the matrix B is very sparse which means that most of the
matrix elements are zero, see section 6.1. For such a matrix the iterative
least-squares algorithm is particularly efficient because the matrix multi-
plications only works on the nonzero matrix elements. The implementation
of this idea in seismic tomography was developed by Clayton and Comer,
[1983] and by Nolet [1985].

Despite the efficiency of the iterative least-squares problems one should
be aware that the convergence of this process may be very slow. An example
from VanDecar and Snieder [1994] is shown in figure 6. In this example one
fits a function whose values are given by the dots in figure 6 by a model
defined as the samples of that function at the x-values indicated by the tick
marks along the horizontal axis. This problem obviously is ill-posed because
the function is not defined between the data points. In order to define a
solution, Occam’s method is used whereWm in (56) is a discretized version
of the gradient operator. The true regularized least-squares solution of this
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Figure 6. One-dimensional example of the convergence of a conjugate-gradient inver-
sion at (a) iteration 2, (b) iteration 4 and (c) iteration 8. The solid line represents the
true least-squares solution. The long-dashed lines are the interactive solutions without
preconditioning while the dotted solutions are obtained using preconditioning.

problem is shown by the solid line. The iterative least-squares solution based
on the conjugate-gradient algorithm after 2, 4 and 8 iterations is shown by
the long-dashed line in the panels of figure 6.

It is clear that the convergence of the iterative least-squares algorithm
is slow. The reason for this is easy to see. At every iteration, every point in
the model interacts only with it’s neighbouring points through the damping
termWm in the matrix. This means that a model element can only interact
with a model element n positions further down the line after n iterations. In
other words, the damping term imposes a global smoothness constraint on
the solution, but in each iteration the model elements interact only locally.
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For this reason an inordinate number of iterations are required. VanDecar
and Snieder [1994] developed a preconditioning operator that leads to a
very rapid convergence, this is indicated by the dotted lines in figure 6.
Note that this iterative solution has superior convergence properties.

A general drawback of all iterative techniques is that most of its ad-
vantages are lost if one is interested in the appraisal part of the problem
since this involves the knowledge of (BTB)−1, which an iterative tech-
nique doesn’t explicitly compute. A way around this is to solve the system
M times, each time replacing the data by a column of B for the resolution
matrix for instance [Trampert and Lévêque, 1990].

3. Linear inverse problems with continuous models

Up to this point, the model vector was finite dimensional. In many inverse
problems the model is a continuous function of the space coordinates; it
therefore has infinitely many degrees of freedom. For example, in inverse
problems using gravity data one wants to determine the mass density ρ(r)
in the earth. This is in general a continuous function of the space coor-
dinates. In realistic inverse problems one has a finite amount of data. A
simple variable count shows that it is impossible to determine a continuous
model with infinitely many degrees of freedom from a finite amount of data
in a unique way.

In order to make the problem manageable we will restrict ourselves in
this section to linear inverse problems. For such problems the data and the
model are related by

di =

∫
Gi(x)m(x)dx + ei . (72)

The notation in this section is one-dimensional, but the theory can be
used without modification in higher dimensions as well. The model is a
continuous model but the data vector is discrete and in practice has a
finite dimension. The kernel Gi(x) plays the same role as the matrix A in
(1). Note that the data are contaminated with errors ei.

Since the forward problem is linear, the estimated model is obtained by
making a linear combination of the data (this is the most general description
of a linear estimator):

m̃(x) =
∑

i

ai(x)di . (73)

The coefficients ai(x) completely specify the linear inverse operator. By
inserting (72) in (73) one arrives again at a relation between the true model
m(x) and the estimated model m̃(x):
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m̃(x) =

∫
R(x, x′)m(x′)dx′

︸ ︷︷ ︸
Finite resolution

+
∑

i

ai(x)ei

︸ ︷︷ ︸
Error propagation

, (74)

with the resolution kernel R given by

R(x, x′) =
∑

i

ai(x)Gi(x
′) . (75)

The first term in (74) accounts for averaging that takes places in the map-
ping from the true model to the estimated model. It specifies through the
resolution kernel R(x, x′) what spatial resolution can be attained. In the
ideal case the resolution or averaging kernel is a delta function: R(x, x′) =
δ(x − x′). The resolution kernel, however, is a superposition of a finite
amount of data kernels Gi(x

′
). These data kernels are in general continu-

ous functions, and since a delta function cannot be constructed from the
superposition of a finite number of continuous functions, the resolution
kernel will differ from a delta function. In Backus-Gilbert theory [Backus
and Gilbert, 1967; 1968] one seeks the coefficients ai(x) in such a way that
the resolution kernel resembles a delta function as well as possible given a
certain criterion which measures this resemblance.

The second term in (74) accounts for error propagation. A proper treat-
ment of this term needs to be based on statistics. It is shown by Backus
and Gilbert [1970] that one cannot simultaneously optimize the resolution
and suppress the error propagation and that one has to seek a trade-off be-
tween finite resolution and error propagation. The above mentioned work
tries to explain the data exactly, even if they contain errors. Gilbert [1971]
extended the theory to explain data within their error bars only.

As mentionned above, the Backus-Gilbert strategy finds the coefficients
ai(x) in equation (73) by imposing a condition on the averaging kernel.
Taratola and Valette [1982] solve the problem in a Baysian framework. They
introduce prior information on the data (Gaussian error distribution) and
prior assumptions (also Gaussian) on the unknown function m(x) which
also yields the coefficients ai(x). In this approach, the resolution or av-
eraging kernel is a consequence of the a priori information, but generally
different from a delta function. They further show that the Backus-Gilbert
approach is contained in Tarantola-Valette solution.

In summary, in both strategies the infinite dimensional problem is trans-
formed into a finite dimensional problem by seeking local averages of the
true model.
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3.1. CONTINUOUS MODELS AND BASIS FUNCTIONS

Another approach is to evoke basis functions which amounts to changing
the parameterization of the model. In general, any continuous model can
be written as a superposition of a complete set of basis functions:

m(x) =
∞∑

j=1

mjBj(x) . (76)

In many global geophysical applications spherical harmonics are used to
represent the seismic velocity or the density inside the earth, since they
form a natural basis to describe a function on the sphere. In that case the
Bj(x) are the spherical harmonics and the sum over j stands for a sum over
degree l and angular order m. The advantage of such an expansion is that
one now deals with a discrete vector mj of expansion coefficients rather
than with a continuous function. However, the basis functions Bj(x) only
form a complete set when the sums is over infinitely many functions, and
hence the problem has shifted from dealing with a continuous function to
dealing with a vector with infinitely many components.

Inserting the expansion (76) into the forward problem (72) we may write

di =
∞∑

j=1

Aijmj + ei , (77)

where the matrix elements Aij are the projection of the data kernels onto
the basis functions:

Aij =

∫
Gi(x)Bj(x)dx (78)

In practice, one cannot deal with infinitely many coefficients, and it is cus-
tomary to ignore the fact that a model vector has infinitely many dimen-
sions by taking only the first L basis functions into account. The resulting
L-dimensional model vector will be denoted by mL, and a similar notation
AL is used for the first L rows of the matrixA. The solution of the resulting
finite dimensional model vector can be found using any technique shown
in section 2. Recall that a general least-squares solution may be found by
minimizing

SL = (d−ALmL)T C−1
d (d−ALmL) +mT

LC
−1
mLmL (79)

as a function of the truncated model vector mL. The weighting operators
Cd and Cm may or may not be given the interpretation of covariance
operators (see section 2.7). The resulting model estimate is then given by
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m̃L =
(
AT
LC
−1
d AL+C−1

mL

)−1
AT
LC
−1
d d (80)

3.2. SPECTRAL LEAKAGE, THE PROBLEM

Truncating the model vector after the first L elements may appear to be a
convenient way to reduce the problem to a finite dimensional one. However,
there are problems associated with this truncation. Analogously to (2) any
linear estimator of the first L coefficients of the infinite vector m can be
written as:

m̃L = A−gL d . (81)

Let us now divide the sum over model elements in (77) as a sum over the
first L elements that we are interested in and the remaining model elements:

d = ALmL +A∞m∞ + e . (82)

In this expression m∞ denotes the infinitely dimensional vector with ele-
ments (mL+1,mL+2, . . .). Inserting this expression in (81) yields the relation
between the estimated L model coefficients m̃L and the true model m (for
a discussion on the objectiveness of the concept of true model, see section
2.5):

m̃L= mL+
(
A−gL AL−I

)
mL

︸ ︷︷ ︸
Limited Resolution

+ A−gL A∞m∞︸ ︷︷ ︸
Spectral leakage

+ A−gL e︸ ︷︷ ︸
Error propagation

(83)

The last three terms in this expression account for deviations in the esti-
mated model from the true model. The second term and the last term are
identical to the corresponding terms in expression (5) for finite-dimensional
problems, accounting for finite resolution within the components of the
vector mL and error propagation respectively. The term A−gL A∞m∞ has
no counterpart in (5) and is responsible for a spurious mapping of the
model coefficients (mL+1,mL+2, . . .) onto the estimated model coefficients
(m̃1, . . . , m̃L). Since the basis function expansion in many problems is that
of a spectral expansion, the mapping from the coefficients m∞ onto the
first L coefficients m̃L will be referred to as spectral leakage [Snieder et al.,
1991].

An example of spectral leakage is shown in the figures 7-10. Suppose
a function on a line, defined in the interval 0 ≤ x < 1, is expanded in
normalized sines and cosines which have at most three wavelengths in the
interval. This means that in this example L = 7. The function is sampled
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at given locations and the sampling is twice as dense on the subintervals
0 ≤ x < 0.25 and 0.5 ≤ x < 0.75 than on the remaining part of the line.
The inverse problem consists in determining the expansion coefficients in
the finite set of basis functions on the line given the sampled data points.
Details of this example may be found in Snieder [1993].

Figure 7. Unweighted least-squares fit of 80 data points (circles) sampling a sine wave
with three wavelength along the interval. The estimated model is shown by the thick
solid line, and is undistinguishable from the true projection on the basis functions.

In figure 7 the sampled function is a sine wave with exactly three wave-
lengths in the given interval. The sampling points are indicated by circles.
The reconstructed function is given by the solid line and is indistinguish-
able from the true function. In figure 8 the input function is a sine wave
with six wavelengths on the interval, this input function is indicated by the
dashed line. Because of the orthogonality of the trigonometric functions,
one would expect this function to have no projection onto the seven basis
functions that are used in the inversion. Nevertheless, the reconstructed
function shown by the solid line in figure 8 differs significantly from zero;
it has about 50% of the magnitude of the input functions. As shown in
Snieder [1993] the expansion coefficients have errors of about 100%! This
difference between the estimated model and zero is entirely due to spectral
leakage because the first L model components mL are equal to zero and
there are no data errors in this example so that only the term A−gL A∞m∞
in (83) can give rise to errors in the model reconstruction.

An interesting observation is that in the interval 0 ≤ x < 0.25 where the
sampling is dense the input model and the reconstructed model are in phase
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Figure 8. Unweighted least-squares fit of 80 data points (circles) sampling a sine wave
with six periods (dashed line). The estimated model is shown by the thick solid line, the
true projection on the basis functions is shown by the thin solid line.

Figure 9. As the previous figure but for an inversion where each data point is with the
inverse of the distance to neighbouring points.

whereas on the interval 0.25 ≤ x < 0.5 where the sampling is sparser the
input model and reconstructed model are out off phase. This means that
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Figure 10. The estimated model when the true model is a sine wave with six wavelengths
along the interval for inversions with different numbers of sampling points with the same
sampling density along the line.

the least-squares criterion has selected a good fit in the densely sampled
parts of the interval at the expense of a poorer fit in the sparsely sampled
parts of the interval. This suggests a cure by down-weighting the contri-
bution of the points in the densely sampled parts of the interval. Figure 9
shows the reconstructed function when the data points are weighted with
weights that are inversely proportional to the sampling distance [Snieder,
1993], it can be seen that the reconstructed model indicated by the solid
line is close to its true value (which is equal to zero). Weighting the data
is the key to suppressing spectral leakage, we will return to this issue in
section 3.3. The reason for the spectral leakage is that the orthogonal-
ity relation of the basis functions is weighted by the data kernels (i.e.∑
i

∫
Gi(x)Bj(x)dx

∫
Gi(y)Bk(y)dy) and that the basis functions are not

orthogonal for this inner product, i.e. this quantity is not equal to δjk.
Let us momentarily return to the unweighted inversion of figure 8. In

that example 80 data points have been used. Note that the input function
is not undersampled in any part of the interval, in other words there is
no aliasing [Claerbout, 1976] occurring in this problem. In figure 10 the
reconstructed function is shown when 40, 80 or 160 data points have been
used in the inversion. In all examples the density of data points was the
same as in figure 9. Spectral leakage is not a problem due to the number of
data points. Adding more data points while keeping the sampling density
constant does not help to suppress spectral leakage.
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Spectral leakage is a fundamentally different issue than aliasing!

In some studies, the reliability of estimated models has been studied by
dividing the data set randomly in two parts, keeping thus the sampling
density constant, and comparing the models reconstructed from the two
halved data sets [e.g. Woodhouse and Dziewonski, 1984]. The fact that
spectral leakage does not reduce when more data points are used implies
that this test does not detect artifacts due to the variability in the data
coverage, and therefore may give an overly optimistic impression of the
reliability of the estimated model.

3.3. SPECTRAL LEAKAGE, THE CURE

The method presented in this section for suppressing spectral leakage was
developed by Trampert and Snieder [1996]. A key element in the analysis
is to acknowledge that more than the first L basisfunctions are needed to
describe the model. This is explicitly done by minimizing

S = (d−ALmL −A∞m∞)T C−1
d (d−ALmL −A∞m∞)

+mT
LC
−1
mLmL +mT

∞C
−1
m∞m∞

(84)

The first term accounts for the minimization of the data misfit. Both, the
first L basis functions contribute to the data misfit with ALmL, as well
as the remaining basis functions through the term A∞m∞. The regular-
ization terms mT

LC
−1
mLmL and mT

∞C
−1
m∞m∞ play a crucial role because

they control to what extent the data misfit is distributed over the first L
basisfunctions and over the remaining basis functions.

One has to minimize expression (84) both with respect to mL and
m∞. Setting the derivatives ∂S/∂mL and ∂S/∂m∞ both equal to zero
and eliminating m∞ from these equations leads to the following estimate
of the vector mL:

m̃L =
(
AT
LC
−1
dLAL+C−1

mL

)−1
AT
LC
−1
dLd , (85)

where the new operator CdL is given by

CdL = Cd +A∞Cm∞AT
∞ . (86)

Expression (85) is very similar to the model estimate (80) obtained by
simply ignoring all basis functions beyond degree L. The only difference is
that the data weighting operator is given by (86) rather than by Cd, but
this difference is essential. The data weighting operator is positive definite.
This implies that the new data weighting operator CdL is always larger
than the old operator Cd. The new operator depends on the kernels A∞ of
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the basisfunctions that are not inverted for, as well as the model weighting
operator Cm∞ of these basis functions. From a Bayesian point of view
these facts are all related by the observation that in this approach the data
are partly explained by the infinite model vector m∞. In the inversion for
mL only, the parts of the data which may be explained by m∞ should be
considered as noise, because they allow a variation in the data that is not
cause by mL. For this reason this approach leads to an increase of the data
variance CdL.

Although (86) looks simple, it is not trivial to evaluate because the
product A∞Cm∞AT

∞ contains matrices of infinite dimensions. When the
model weighting matrix Cm∞ is chosen to be proportional to the identity
matrix (Cm∞ = γI) there is a simple alternative because one only needs
to evaluate the product A∞AT

∞. The ij-element of A∞AT
∞ can be written

as
(
A∞AT

∞
)
ij

=
∑∞
k=L+1AikAjk. Using expression (78) for the matrix

elements and interchanging the summation and the integration one can
show that

(
A∞A

T
∞
)
ij

=

∫
dx

∫
dy Gi(x)Gj(y)

∞∑

k=L+1

Bk(x)Bk(y) . (87)

The sum over k can be written as a sum over all k-values minus the sum
over the first L values:

∞∑

k=L+1

Bk(x)Bk(y) =
∞∑

k=1

Bk(x)Bk(y)−
L∑

k=1

Bk(x)Bk(y) . (88)

The basis functions form a complete set. Because of the closure relation∑∞
k=1Bk(x)Bk(y) = δ (x− y) [e.g. p. 157 of Merzbacher, 1970] this can be

written as:

∞∑

k=L+1

Bk(x)Bk(y) = δ (x− y)−
L∑

k=1

Bk(x)Bk(y) . (89)

Inserting this in (87) leaves after carrying out the y-integration in the first
term and using (78) for the second term:

(
A∞AT

∞
)
ij

= Γij −
(
ALA

T
L

)
ij
, (90)

where the Gram matrix Γ of our inverse problem is given by

Γij =

∫
Gi(x)Gj(x)dx . (91)
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The first term in (90) can be computed by direct integration, whilst the
second term now only involves multiplication of matrices of finite dimen-
sion. It should, however, be pointed out that not all problems in geophysics
possess a well defined Gram matrix.

3.4. SPECTRAL LEAKAGE AND GLOBAL TOMOGRAPHY

The burning question is of course if spectral leakage is a serious problem
in geophysics. We believe that the answer to this question is yes and il-
lustrate this with a surface wave tomography problem. A surface wave of
a given frequency sees an average structure of the outer-most layer of the
Earth. The penetration of the wave depends on its frequency. The map-
ping problem concerns only a two-dimensional quantity (phase velocity as
function of latitude and longitude) and is thus easier to represent than a
three-dimensional problem. To quantify the effect of leakage, we need to
know the true answer to the problem.

We designed a synthetic experiment where we used a station-event dis-
tribution based on the global seismicity from 1989 together with the avail-
able global seismic stations. We have chosen arbitrarily 3000 paths giving
a dense but uneven coverage (for details see Trampert and Snieder, [1996]).
Next we took a Rayleigh wave phase velocity model [Trampert and Wood-
house, 1995] for a period of 80 seconds expressed in terms of spherical
harmonics up to degree and order 40 and computed synthetic data for our
chosen ray geometry. We added 10% random noise to the data and per-
formed a classical least squares inversion up to degree and order 12. In
figure 11 (bottom panel) we show the difference between the true degree
12 input model and the recovered model. This signal is far from zero and
reaches in most places on the globe half the amplitude of the true model. If
we applied the anti-leakage weighting defined in expression(86) the ampli-
tudes of the artefacts are significantly reduced, see the top panel of figure
11. The anti-leakage operator does not completely prevent the bias because
of the errors which we introduced in the synthetic data. To understand
this, recall from equation (86) that the description of data errors and the
anti-leakage operator add up linearly and thus any imperfect description of
data errors will influence the anti-leakage. This suggests that our current
tomographic models are likely to carry a bias from small-scale structures
that are not accounted for by our current parameterizations.

4. The single scattering approximation and linearized waveform
inversion

In the previous sections, the inverse problem was described when the for-
ward problem was linear. Unfortunately, most wave propagation problems
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Figure 11. Example of phase velocity mapping with inhomogeneous sampling. The true
model represents up to 6% perturbations with respect to a spherically average reference
model. Plotted is the difference between true and estimated model: simple least-squares
inversion (bottom) and anti-leakage inversion (top).
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are nonlinear in the sense that the relation between the wave field and
the medium is nonlinear. However, in many practical situations this re-
lation can be linearized, notably with the single-scattering approximation
(this section), with Fermat’s theorem (section 6) and Rayleigh’s principle
(section 5).

4.1. THE BORN APPROXIMATION

Many wave propagation problems can symbolically be written in the form

Lu = F (92)

In this expression u is the wave field, F accounts for the source that excites
the waves and L is a differential operator that describes the wave propa-
gation. For example, for acoustic waves in a medium with constant density
(92) is given by (

∇2 +
ω2

c2(r)

)
u(r) =F (r) , (93)

so that L = ∇2 + ω2/c2(r). Often, the operator L can be decomposed into
an operator L0 that correspond to a reference medium for which we can
solve the problem easily plus a small perturbation εL1 that accounts for a
perturbation of the medium:

L = L0 + εL1 . (94)

The small parameter ε has been introduced to facilitate a systematic pertur-
bation approach. As an example, the operator L in (93) can be decomposed
using

1

c2(r)
=

1

c20
(1 + εn(r)) , (95)

where c0 is a constant velocity that described the mean properties of the
medium well while n(r) accounts for the velocity perturbations. Using this
decomposition one obtains L1 = n(r)ω2/c20.

The wavefield is perturbed by the perturbation of the medium, this
perturbation can be written as a regular perturbation series:

u = u0 + εu1 + ε2u2 + · · · (96)

A systematic perturbation approach is obtained by inserting (94) and (96)
in (92) and by collection the terms that are of equal power in the pertur-
bation strength ε. The terms proportional to ε0 and εn respectively lead to
the following equations:

L0u0 = F , (97)
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L0un = −L1un−1 for n ≥ 1 . (98)

Equations (97) and (98) are of the form L0u = forcing term and hence can
be solved using the Green’s function G of the unperturbed problem, i.e. by
using the Green’s function that satisfies

L0G(r, r′) = δ(r − r′) . (99)

For vector waves the Green’s function should be replaced by a second order
tensor, but the principles are the same. Using this Green’s function the
solution of (97) and (98) is given by

u0 = GF and un = −GL1un−1 (n ≥ 1) . (100)

The solution can now be constructed by solving the above equation recur-
sively and by inserting the result in (96):

u = u0︸︷︷︸
Unperturbed

wave

− εGL1u0︸ ︷︷ ︸
Single

scattered
wave

+ ε2GL1GL1u0︸ ︷︷ ︸
Double

scattered
wave

+ · · · (101)

In this formulation the total wavefield is written as a sum over the un-
perturbed wave, the waves that are scattered once by the inhomogeneity
L1, the waves that are scattered twice by the perturbation L1 and all the
higher order scattered waves. The series (101) is called the Neumann series
in scattering theory.

The Born approximation uBorn consists in truncating this multiple scat-
tering series after the single scattered wave:

uBorn = u0 − εGL1u0 . (102)

The great advantage of this approximation is that the scattered waves are
given by −εGL1u0, hence the scattered waves now depend linearly on the
perturbation of the medium that is contained in the operator L1. This
means that the scattered waves are related in this approximation linearly
to the perturbation of the medium. This makes it possible to use the theory
of linear inverse problems as shown in the section 2 for the solution of this
problem. In doing so, one must keep in mind that the Born approximation
ignores multiple scattering effects. When such effects are present in the data
one should be extremely cautious in using the Born approximation.

4.2. INVERSION AND MIGRATION

As one of the simplest examples let us return to the acoustic wave equation
(93) with the perturbed velocity given in (95). The unperturbed problem
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is then given by
(∇2 + k2

)
u = F where the constant wavenumber is given

by k = ω/c0. The Green’s function for this differential equation is given by

G(r, r′) = − eik|r − r′|
4π |r − r′| . (103)

When a point source with spectrum F (ω) is located in rs the unperturbed
wave is given by

u0(r) = − eik|r − rs|
4π |r − rs|

F (ω) . (104)

In the Born approximation, the scattered waves are scattered only once, it
follows from (102) that the single-scattered waves at a receiver position rr
are given by:

us(rr) = − 1

(4πc0)2

∫
eik|rr−r|
|rr−r|

n (r)
eik|r − rs|
|r − rs|

dV F (ω) . (105)

Suppose one measures these single-scattered waves, as is done in a seis-
mic reflection experiment. The inverse problem then consists in finding the
model perturbation n(r) given the recorded data us(rr). The theory of
section 2 can be used for this when one discretizes the volume integral in
(105). After discretization the scattering integral by dividing the volume in
small cells, this integral can be written in the form

ui =
∑

j

Aijnj . (106)

Since in a realistic imaging experiment one uses many source positions
and records the wavefield at many receivers, ui stands for the reflected
wave for source-receiver pair and frequency component #i. Because of the
discretized volume integral, nj denotes the perturbation of 1/c2(r) in cell
#j. The matrix elements Aij are given by

Aij = − 1

(4πc0)2

∫

cell j

eiki|rri−r|
|rri−r|

eiki|r − rsi|
|r − rsi|

dV F (ωi) . (107)

In principle, one can solve the linear system (106) by brute force. How-
ever, in many realistic problems the size of the system of equations is so
large that this is practically speaking impossible. This is notably the case
in seismic exploration where the number data and the number of model
parameters are exceedingly large. For problems of this scale, iterative so-
lutions of the linear system of equations seems the only realistic way of
obtaining a solution. In fact, it is in practice only possible to carry out
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the first step of such an iterative process. Let us find an estimated model
by using the first step of the iterative solution (71) of section 2.9.2 using
the preconditioning operator P =const. ·I. In this approach the estimated
model is given by:

ñ(r) ∼ A†d ∼
∑

sources
receivers
frequencies

e−iω(|rr−r|+|r − rs|)/c
|rr−r| |r − rs|

drs(ω) , (108)

where drs(ω) denotes the scattered wave for source s, recorded at receiver r
with frequency ω. For simplicity it is assumed here that the source signal is
a delta-pulse in the time domain, so that F (ω) = 1, and that all cells have
equal volume: Vj = const. Note that the transpose AT has been replaced

by the Hermitian conjugate A†.6 The reason for this is that the analysis
of section 2 was for real matrices. A similar analysis for complex matrices
shows that the results are identical provided the transpose AT is replaced
by its complex conjugate. The summation in the matrix product effectively
leads to a summation over all sources, receivers and frequency components
because all these were labelled by the index i in (106).

It is instructive to consider the summation over frequencies in (108). At
each frequency the data drs(ω) are multiplied with exp (−iωτ) with τ =
(|rr−r|+ |r − rs|) /c. This means that the frequency summation has the
form of a Fourier transform so that up to a constant, the frequency summa-
tion gives the data in the time domain at time t = (|rr−r|+ |r − rs|) /c:

ñ(r) ∼
∑

sources
receivers

1

|rr−r| |r − rs|
drs(t =

(|rr−r|+ |r − rs|)
c

) (109)

This expression implies that the image can be constructed by summing the
data over all source-receiver pairs, and by considering for each target point
the data at a time needed to travel from the source location rs to the target
point r to the receiver location rr.

This is the procedure followed in the imaging of seismic reflection data
called “Kirchhoff migration” [Claerbout, 1985 ; Yilmaz, 1987]. Effectively
one sums in such an approach over all the available data that have a travel
time consistent with a scatterer at the target point r. The only difference
with the classical Kirchhoff migration is the presence of the geometrical

6The complex conjugate of the transpose is by definition the Hermitian conjugate:
A†ij = A∗ji.
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spreading terms 1/ (|rr−r| |r − rs|) that are not included in Kirchhoff mi-
gration. In non-destructive testing this approach is known as Synthetic
Aperture Focussing Technique (SAFT) [Mayer et al., 1990]. The main con-
clusion is that Kirchhoff migration (up to some constants) corresponds to
the first step of an iterative solution of the linearized scattering equation.
The derivation of this section is a simplified version of the derivation given
by Tarantola [1984] who incorporates other source signals than a delta
pulse.

4.3. THE BORN APPROXIMATION FOR TRANSMISSION DATA

There is a widespread belief that the Born approximation can only be used
for truly scattered waves. However, the Born approximation can also be
used to account for effects of medium perturbations on transmitted waves,
but with a domain of applicability to transmission problems that is smaller
than for reflection or true scattering problems. To see this, assume that the
velocity has a small constant perturbation δc and that a wave propagates
over a distance L. The wave will then experience a phase shift exp iϕ,
given by ϕ = − (ω/c2)Lδc. In the Born approximation this perturbation is
replaced by exp iϕ ≈ 1 + iϕ. This in only a good approximation when the
phase shift ϕ is much less than a cycle. In practice, this limits the use of the
Born approximation for the inversion of transmission data. Note that even
when the velocity perturbation is small, the requirement that the phase
shift is small breaks down for sufficiently large propagation distances L.

This does not imply that the Born approximation cannot be used for
the inversion of transmitted waves. For surface waves propagating in the
earth, the wavelength can be very long. (A Rayleigh wave at a period of
75s has a wavelength of about 300km.) This means that these waves do not
travel over very many wavelengths when they propagate for a few thousand
kilometers. In addition, the heterogeneity in the Earth’s mantle is not very
large. This makes it possible to carry out inversions of transmitted surface
wave data using the Born approximation.

The Born approximation for surface waves with the resulting scattering
and mode-conversion coefficients is derived for a flat geometry by Snieder
[1986a, 1986b], the generalization to a spherical geometry can be found in
Snieder and Nolet [1987]. Although the Green’s function and the scattering
and mode-conversion coefficients are different for elastic surface waves than
for acoustic waves, the Born approximation leads to a linearized relation
between the perturbation δu of the waveform and the perturbation m of
the Earth model:

δurs(ω) =

∫∫∫
Krs(r, ω)m(r)dV , (110)
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where Krs(r, ω) contains the surface wave Green’s function of the incoming
and outgoing wave at the scatterer location r for source-receiver pair “rs”
and frequency ω. The perturbation m(r) stands for the perturbation in the
elasticity tensor and/or the density. After discretization the volume integral
can be written as a linear system of equations:

δui =
∑

j

Kijmj , (111)

where δui stands for the perturbation of the surface wave at source-receiver
pair #i and frequency ωi, while mj stands for the perturbation of the Earth
model in cell #j. This linear system can be solved numerically, and the
specific implementation for the inversion of surface wave data is shown by
Snieder [1988a].

Figure 12. Phase shifted data (left panel) and data with an amplitude anomaly (right
panel) before and after inversion. The synthetic data are shown with a solid line, the
synthetics before and after inversion with a dashed line.

As an example how this algorithm operates consider the two upper seis-
mograms shown in the two panels of figure 12. The seismogram of the left
panel has been shifted in time with respect to the seismogram of a laterally
homogeneous Earth model, whereas the amplitude of the seismogram of
the right panel has been increased by 20%. Both seismograms are inverted
simultaneously, and the corresponding model is shown in figure 13. (The
map is shown only to display the scale of the problem but has otherwise
no specific meaning.) The fit of the wave-forms after inversion is shown by
the lower seismograms in figure 12, it can be seen that both the time shift
and the amplitude change are accounted for well.
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Figure 13. The velocity model obtained from the inversion of the seismograms in the
previous figure. The source locations are marked with triangles, the receivers with squares.
The source-receiver pair on the left is for the phase shifted seismogram, the pair on the
right for the seismogram with an amplitude error. The map serves only to fix the scale.

The triangle and square on the left are the source and receiver respec-
tively of the time-shifted seismogram while the same symbols on the right
are for the seismogram with the amplitude change. The velocity anomaly
for the time-shifted seismogram is a negative velocity perturbation strad-
dling the line joining the source and receiver on the left in figure 13. This
negative velocity change gives the required time-shift. Note that this veloc-
ity perturbation is not confined to the source-receiver line; its finite extent
is due to the fact that rays have no physical meaning and that a wave is
influenced by the velocity perturbation averaged over the first Fresnel zone
[Snieder and Lomax, 1996].

The velocity structure on the right is for the seismogram with the per-
turbed amplitude. The perturbation is negative on the source-receiver line,
but slightly further away from this line the velocity perturbation is positive.
Since waves are deflected from areas of high velocity towards regions of low
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velocity, the wave energy is deflected towards the receiver. This means that
the algorithm has realized a fit of the amplitude perturbation by creating
a “surface wave lens” that produces just the right amount of focussing at
the receiver to account for the amplitude perturbation.

Note that the model of figure 13 was constructed by numerically solving
the linear system of equations (111). The input of the system of equations
simple consisted of the real and imaginary components of the perturbation
of the surface waves in the frequency domain. At no point in the inversion
has the phase or amplitude of the waves been prescribed explicitly. However,
the Born approximation contains all the relevant physics needed to translate
the perturbation of the real and imaginary components of the waves into
the physics of focussing and phase retardation.

4.4. SURFACE WAVE INVERSION OF THE STRUCTURE UNDER
NORTH-AMERICA

The surface waveform inversion has been applied to infer the shear-velocity
structure under Europe and the Mediterranean by Snieder [1988b]. In this
section a model for the shear-velocity under North-America is shown that
was made by Alsina et al. [1996]. The shear-velocity perturbation in three
layers with depths between 25 and 300 km is shown in figure 14. Red colours
indicate slow velocities that are indicative of high temperature while green
colours indicate high velocities correspond to low temperature.7

It is instructive to consider the west-coast of North America. Under the
Gulf of California the velocity is very low. In this region, the East-Pacific
rise meets the continent. (The East-Pacific rise is a spreading center in
the ocean bottom comparable to the Mid-Atlantic ridge in the Atlantic
Ocean.) Since in a spreading center hot material wells up from the mantle,
one expects the temperature to be low, which is consistent with the slow
velocity in that region.

Further north at the state of California the velocity perturbation is close
to zero. In this area the Pacific plate slides horizontally along the North-
American plate. This so called “strike-slip motion” gives rise to earthquakes
in California. However, since the plate simply slide along each other, the
temperature field is not perturbed very much, which is reflected by the
neutral velocity perturbation.

However, northward of Cape Mendocino under the states of Oregon and
Washington there is a distinct positive velocity perturbation. In this region
oceanic plates slide eastward under the continents. This process is called

7The identification of velocity anomalies with temperature perturbations should be
treated with care. Apart from temperature perturbations the seismic velocity is also
affected by variations is compostion, the presence of volatiles such as water and possibly
also pressure.
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Figure 14. The relative shear velocity perturbation under North America in three layers
at depths between 25 and 300 km as determined by [Alsina et al., 1996].
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“subduction.” Since the subsiding plate is colder than the surrounding ma-
terial this is reflected in the image as positive velocity anomalies.

The model shown in figure 14 and it’s relation with the different tectonic
regimes at the west coast of North-America show that with tomographic
techniques as shown here it is possible to see plate-tectonics in action.

5. Rayleigh’s principle and perturbed eigenfrequencies

Important information about the structure of the Earth’s interior follows
form observations of perturbations of the frequencies of the free oscillations
of the Earth as well as from measurements of the perturbation of the phase
or group velocity of surface waves. This information can most easily be
retrieved from observations when the relation between the frequency shift
(or surface wave phase velocity) and the perturbation of the Earth model
can be linearized. This can be achieved by applying Rayleigh-Schrödinger
perturbation theory.

5.1. RAYLEIGH-SCHRÖDINGER PERTURBATION THEORY

Consider an eigenvalue problem of the following form:

Hun = λnrun . (112)

In this expression H is an operator, for wave-propagation problems it usu-
ally is a differential operator. The eigenfunctions of this operator are de-
noted by un and the corresponding eigenvalues by λn. The function r de-
notes a positive weight function. For the Earth the equation of motion is
given by

∂j (cijkl∂kul) = −ρω2ui , (113)

where cijkl is the elasticity tensor. A comparison with (112) shows that
H (•)i = ∂j (cijkl∂k (•)l), that the weight function r is given by the density
ρ and that λ corresponds to −ω2. In this case, H is a Hermitian operator:

H† = H . (114)

For the special case of elastic wave propagation, this property stems from
the symmetry properties of the elasticity tensor and the stress-free bound-
ary conditions at the Earth’s surface [Nolet, 1981; Dahlen and Tromp, 1998].
For a Hermitian operator the eigenvalues are real and the eigenfunctions
are orthonormal with respect to the following inner product

〈un|rum〉 =

∫
u∗nrumdV = δnm . (115)
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Let the operator H and the weight function r be decomposed in a ref-
erence operator H0 and weight function r0 for which we know the eigen-

functions u
(0)
n and eigenvalues λ

(0)
n and perturbations εH1 and εr1:

H = H0 + εH1 , r = r0 + εr1 . (116)

Under this perturbation the eigenfunctions and eigenvalues are perturbed
as well:

un = u(0)
n + εu(1)

n + ε2u(2)
n + · · · (117)

λn = λ(0)
n + ελ(1)

n + ε2λ(2)
n + · · · (118)

The goal of this analysis is to find the first order perturbation λ
(1)
n of

the eigenvalues. This can be achieved by inserting the expressions (116)
through (118) in (112) and by collecting the terms of order ε1, this gives:

H1u
(0)
n +H0u

(1)
n = λ(1)

n r0u
(0)
n + λ(0)

n r1u
(0)
n + λ(0)

n r0u
(1)
n (119)

The problem with this expression is that we are only interested in λ
(1)
n ,

but that in order to retrieve this term from (119) we need the first order

perturbation u
(1)
n of the eigenfunctions as well. The perturbation of the

eigenvalue can be extracted by taking the inner product of (119) with the

unperturbed eigenfunction u
(0)
n :

〈
u

(0)
n |H1u

(0)
n

〉
+
〈
u(0)
n |H0u

(1)
n

〉

︸ ︷︷ ︸
(♥)

= λ
(1)
n

〈
u

(0)
n |r0u

(0)
n

〉
+ λ

(0)
n

〈
u

(0)
n |r1u

(0)
n

〉
+ λ(0)

n

〈
u(0)
n |r0u

(1)
n

〉

︸ ︷︷ ︸
(♠)

(120)

Note that the perturbed eigenfunctions u
(1)
n only appear in the terms marked

(♥) and (♠). Using the fact that H0 is Hermitian and that the eigenvalues

λ
(0)
n are real one finds that these terms are equal:

(♥) =
〈
u

(0)
n |H0u

(1)
n

〉
=
〈
H†0u

(0)
n |u(1)

n

〉
=
〈
H0u

(0)
n |u(1)

n

〉

=
〈
λ

(0)
n u

(0)
n |u(1)

n

〉
= λ

(0)
n

〈
u

(0)
n |u(1)

n

〉
= (♠)

(121)

This means that the terms containing the perturbed eigenfunctions cancel.
Solving the remaining equation for the perturbation of the eigenvalue gives:

λ(1)
n =

〈
u

(0)
n |

(
H1 − λ(0)

n r1

)
u

(0)
n

〉

〈
u

(0)
n |r0u

(0)
n

〉 . (122)
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The perturbation of the eigenvalue thus follows by evaluating the inner
product of the perturbed operators sandwiched between the unperturbed
eigenfunctions. This is one form of Rayleigh’s principle: the eigenvalues are
stationary to first order for perturbations of the eigenfunctions. The crux is
that according to 122 the first-order perturbation of the eigenvalues depends
linearly on the perturbations of the operator H and weight r and hence
linear inverse theory as exposed in the previous sections may be applied to
infer the perturbations of H and r from the measured eigenvalues of the
system.

5.2. THE PHASE VELOCITY PERTURBATION OF LOVE WAVES

Expression (122) can be used to evaluate the perturbation of the phase
velocity of surface waves due to perturbations of the Earth model. This
is shown here for the simplest example of Love waves in a plane geome-
try. The reader is referred to Aki and Richards [1980] for the extension to
Rayleigh waves, while the analysis for a spherical geometry is treated by
Takeuchi and Saito [1972]. As shown in Aki and Richards [1980] the Love
wave eigenfunctions satisfy the following differential equation:

∂z(µ∂zv) +
(
ρω2 − µk2

)
v = 0 , (123)

where µ is the shear modulus. The surface waves modes vanish at large
depth (z → ∞) and are stress-free at the surface. This gives the following
boundary conditions:

∂zv(z = 0) = 0 , v(z =∞) = 0 . (124)

In this analysis we assume that the frequency ω is a given constant. The
operator H is given by H = ∂zµ∂z + ρω2, the weight function r is given
by the shear modulus (r(z) = µ(z)) while k2 is the eigenvalue

(
λ = k2

)
. An

integration by parts using the boundary conditions (124) can be used to
show that the operator H is Hermitian. The theory of section 5.1 can then
be used to find the perturbation δk of the wavenumber due to a perturbation
µ1 in the shear modulus and a perturbation ρ1 in the density. Using the
first order relation δk2 = 2kδk one obtains from (122) that:

δk =

∫ (
ρ1ω

2 − µ1k
2
)
v2dz − ∫ µ1 (∂zv)2 dz

2k
∫
µ0v2dz

. (125)

Since the phase velocity is given by c = ω/k the phase velocity pertur-
bation follows to leading order from this expression by using the relation
δc/c = −δk/k. This means that the first order effect of the perturbation
of the Earth model on the phase velocity of Love waves can readily be
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computed once the unperturbed eigenfunctions v(z) are known. A similar
result can be derived for Rayleigh waves.

In general, the perturbation in the phase velocity due to perturbation
in the density, P-wave velocity α and S-wave velocity β can be written as:

δc

c
=

∫
Kβ(z)

δβ(z)

β(z)
dz +

∫
Kα(z)

δα(z)

α(z)
dz +

∫
Kρ(z)

δρ(z)

ρ(z)
dz . (126)

For Love waves the kernel Kα(z) vanishes because Love waves are inde-
pendent of the bulk modulus. Examples of the kernels Kβ, Kα and Kρ are
shown in figure 15 for the fundamental mode Rayleigh waves of periods of
100s (left panel) and 30s (right panel) respectively. It can be seen that the
sensitivity of Rayleigh waves to the P-velocity α is much less than the sensi-
tivity for changes in the shear velocity β and that the sensitivity kernel Kα

decays more rapidly with depth than the other kernels. Both phenomena
are a consequence of the fact that the compressive component of the motion
become evanescent at much shallower depth than the shear component.

Figure 15. The sensitivity kernels Kα (thin solid line), Kβ (thick solid line) and Kρ

(dashed line) for the fundamental mode Rayleigh wave for a period of 100s (left panel)
and 30s (right panel). The kernels are computed for the PREM model [Dziewonski and
Anderson, 1981].

For larger periods (left panel) the sensitivity kernels penetrate over a
greater depth range than for shorter periods (right panel). This makes is it
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possible to obtain a depth resolution in surface wave inversions. By mea-
suring the phase velocity of surface waves at different periods, one obtains
according to (126) and figure 15 the inner product of the perturbation of
the Earth model with different weight functions K(z). The theory of lin-
ear inversion in section 2 can then be used to determine the perturbation
of the Earth model as a function of depth. Of course, only a finite depth
resolution can be obtained, but using the expressions (4) or (75) one can
determine the depth resolution that can be obtained. The depth resolution
can be increased by using higher modes as well as the fundamental mode
surface waves and by using both Love waves and Rayleigh waves [Nolet,
1977; Cara, 1978; van Heijst and Woodhouse, 1997].

The theory of this section can be extended to include anisotropic pertur-
bations in the Earth as well [Tanimoto, 1986; Montagner and Nataf, 1986].
The depth-dependence of the sensitivity kernels of the Rayleigh wave phase
velocity show a dependence of the anisotropic P-wave velocity that is fun-
damentally different than that of the isotropic P-wave velocity [Muyzert
and Snieder, 1999].

6. Fermat’s theorem and seismic tomography

Travel-time tomography is a technique where one aims to reconstruct the
velocity structure of a body given the measurement of travel times of waves
that have propagated through that body. The travel time along a ray is
given by

T =

∫

r[u]
u(r)ds . (127)

In this expression, u is the slowness which is defined as the reciprocal of
the velocity: u = 1/c. The slowness is used rather than the velocity because
now the integrand is linear to the quantity we aim to retrieve. It is tempting
to conclude from (127) that the relation between the travel time and the
slowness is linear. However, this is wrong! The reason for this is that the
integration in (127) is along the path on which the waves travel. The rays
are curves of stationary travel time, and hence the ray location depends on
the slowness as well. Travel time tomography is thus a nonlinear inverse
problem: the unknown slowness is present both in the integrand and it
determines the ray position r[u] in the travel time integral (127). Linear
inversion techniques can only be used when the relation between T and u
is linearized.

Traditionally this is achieved by invoking Fermat’s theorem which states
that the travel along a ray does not change to first order when this ray is
perturbed [e.g. Nolet, 1987; Ben-Menahem and Singh, 1981]. The proof of
Fermat’s theorem is based on variational calculus and invokes the equations
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of kinematic ray tracing. However, the same result can be derived in a much
simpler way when one starts from the eikonal equation.

6.1. FERMAT’S THEOREM, THE EIKONAL EQUATION AND SEISMIC
TOMOGRAPHY

The derivation given in this section was formulated by Aldridge [1994] and
is based on a perturbation analysis of the eikonal equation. Here, only
the first order travel time perturbation will be derived, but Snieder and
Aldridge [1995] have generalized the analysis to arbitrary order. Starting
point is the eikonal equation which governs the propagation of wavefronts:

|∇T |2 = u2(r) . (128)

Consider a reference slowness u0(r) that is perturbed by a perturbation
εu1(r), where the parameter ε serves to facilitate a systematic perturbation
approach:

u(r) =u0(r)+εu1(r) . (129)

Under this perturbation the travel changes, and we assume that the travel
time can be written as a regular perturbation series:8

T = T0 + εT1 + ε2T2 + · · · (130)

Inserting (129) and (130) in the eikonal equation (128) and collecting terms
proportional to ε0 and ε1 gives:

|∇T0|2 = u2
0(r) , (131)

(∇T0 · ∇T1) = u0u1 . (132)

The first equation is the eikonal equation for the reference travel time.
Let the unit vector t̂0 be directed along the gradient of T0, then using (131)
this gradient can be written as

∇T0 = u0t̂0 . (133)

Taking the inner product of this expression with t̂0 gives
(
t̂0 · ∇T0

)
= u0,

which can also be written as

dT0

ds0
= u0 . (134)

8The assumption that the travel time perturbation is regular is not valid when caustics
are present and the relation between the slownes perturbation and the travel time surface
is not analytic.
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In this expression d/ds0 = t̂0 · ∇ is the derivative along the unit vector t̂0.
Expression (134) can be integrated to give

T0 =

∫

r0[u0]
u0(r0)ds0 , (135)

where r0 is the position of the ray in the reference slowness field.
Using (133), expression (132) for the travel time perturbation can be

written as
(
t̂0 · ∇T1

)
= u1, but since t̂0 ·∇ = d/ds0 this can also be written

as
dT1

ds0
= u1 . (136)

This expression can be integrated to give

T1 =

∫

r0[u0]
u1(r0)ds0 . (137)

The main point of this derivation is that the integration in (137) is
along the reference ray r0 rather than along the true ray in the perturbed
medium. Expression (137) constitutes a linearized relation between the
travel time perturbation T1 and the slowness perturbation u1. When one
divides the model in cells where one assumes the slowness perturbation is
constant, then the discretized form of (137) can be written as

δTi =
∑

j

Lijuj . (138)

In this expression, the subscript i labels the different travel times that are
used in the inversion while j is the cell index. It follows from figure 16 that
Lij is the length of ray #i through cell #j. Equation (138) forms a linear
system of equations as discussed in section 2.

The matrix Lij is in general very sparse for tomographic problems be-
cause every ray intersects only a small fraction of the cells, see figure 16.
This is in particular the case in three dimensions where the relative num-
ber of intersected cells is much smaller than in two dimensions. This makes
it particularly attractive to use iterative solutions for the linear system of
equations as presented in section 2.9.2. It follows from expression (71) that
in this iterative approach the solution is constructed by multiplication with

the matrices L and LT , but that the inverse
(
LTL

)−1
(which is not sparse)

is not needed. In such an approach there not even a need to store the ma-
trix L, it is much efficient to store only the relatively few nonzero matrix
elements and keep track of the indices of these elements. This approach
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Lij
Ray i

Cell j

Figure 16. Diagram of a tomographic experiment.

has been developed by Nolet [1985] and has been used successfully for ex-
tremely large-scale tomographic inversion for the interior of the Earth’s
mantle [e.g. Spakman et al., 1993; van der Hilst et al., 1997].

It should be remarked that there is no strict need to use cells to dis-
cretize the slowness (and the same holds for the treatment of linearized
waveform inversion in the sections 4.2 and 4.3). As an alternative the slow-
ness perturbation can be expanded in a finite set of basis functions Bj(r):

u1(r) =
L∑

j=1

mjBj(r) . (139)

Inserting this in (137) one again arrives at a linear system of the form (138),
but the matrix elements are now given by

Lij =

∫

ref ray j
Bj(r)ds0 , (140)

where the integration now is along reference ray #j. However, one should
realize that when the basis functions have global character, such as spherical
harmonics, the matrix L is in general not sparse with this model parame-
terization. This means one cannot fully exploit the computational efficiency
of iterative solutions of linear systems.

6.2. SURFACE WAVE TOMOGRAPHY

For most people Fermat’s principle goes hand in hand with travel time to-
mography, but surface wave tomography actually relies on it since the early
twenties when Gutenberg [1924], using data collected by Tams [1921], ex-
plained the dispersion differences between surface waves propagating along
continental and oceanic paths in terms of properties of the Earth’s crust.
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Surface wave tomography clearly means tomography based on surface
waves. There are several ways of doing this. One may directly invert the
waveform for structural parameters, provided the sensitivities are known.
Generally, the structural parameters are non-linearly related to the wave-
forms and one way (among others) to linearize the problem has been out-
lined in section 4.3. A more classical approach, consists of the so-called
two-step inversion where one first constructs models of phase or group ve-
locity as a function of frequency. The information contained in these maps is
then inverted for depth structure. This is possible because expression (126)
gives a liner relation between the phase velocity as a function of frequency
and the perturbation of the medium as a function a depth. The mapping
from phase velocity to depth then reduces to a linear inverse problem to
which the techniques of section 2 can be applied.
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Figure 17. Love wave phase velocity perturbations at a period of 40 seconds. The
variations are given in percent with respect to an average reference model. Yellow lines
represent plate boundaries and yellow circles are hotspots.

It is this first step which commonly assumes Fermat’s principle. If we
assume that the Earth structure is sufficiently smooth compared to the
wavelength of a propagating wave, locally any wave of frequency ω may be
approximated by a plane wave. We are then in the realm of ray theory and
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are able to measure the mean phase (or group) velocity along the ray path.
If furthermore Fermat’s principle holds, the measurements correspond to
path integrals along the minor and major arc segments of the great circle
connecting station and event. It is undoubtedly the case that there are
many examples of off-great-circle propagation and non-theoretical effects.
The extend to which such effects corrupt the models constructed under
the simple assumptions of Fermat’s principle can only be determined by
numerical modelling, and is still an open question.

It is commonly accepted that Fermat’s principle is valid for surface wave
periods longer than 150 seconds roughly, and most work until the mid-
nineties concentrated on these longer periods. Trampert and Woodhouse
[1995, 1996] extend these classical methods in two ways. Firstly, they ap-
plied it to much shorter periods in the range of 40 to 150 seconds. Secondly,
they exploited the by now tremendous wealth of assembled digital data in
a systematic fashion by developing fully automatic methods for extracting
path-averaged phase velocities of surface waves from recorded waveforms.
The most original feature of these studies is the phase velocity maps at
short periods which gives new global information on the uppermost struc-
ture of the Earth. As an example, the model for the phase velocity of Love
waves at a period of 40 seconds is shown in figure 17. The Love-wave model
shows a remarkable correlation with surface topography and bathymetry,
and hence with crustal thickness. This is too be expected because these
waves sample the surface with an exponentially decaying sensitivity. The
reference model used in the inversion has a crustal thickness of 24.4 km. If
the true Earth has a thicker crust, mantle material of the reference model
is replaced with slower crustal material resulting in a slow velocity pertur-
bation. This is the case for the continents. In oceans, the opposite takes
place. The sensitivity of 40 second Love waves decays very rapidly with
depth and hence tectonic signatures from the uppermost mantle are less
pronounced. Nevertheless, a slow velocity anomaly is observed along most
oceanic ridges, where hot, and hence slow, material is put into place.

7. Nonlinearity and ill-posedness

Nonlinearity complicates the estimation problem considerably. In many
practical problems, nonlinear inversion is treated as a nonlinear optimiza-
tion problem where a suitably chosen measure of the data misfit is reduced
as a function of the model parameters. There is a widespread belief in the
inverse problem community that the dominant effect of nonlinearity is the
creation of secondary minima in the misfit function that is minimized. This
point of view is overly simplistic. Nonlinearity affects both the estimation
problem and the appraisal problem. In sections 7.1 and 7.2 it is shown how
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non-linearity can be a source of ill-posedness of inverse problems. In section
8 the appraisal problem for nonlinear inverse problems is discussed.

7.1. EXAMPLE 1, NON-LINEARITY AND THE INVERSE PROBLEM FOR
OF THE SCHRÖDINGER EQUATION

The inverse problem of the estimation of a quantum mechanical poten-
tial in one dimension from the measurement of the reflection coefficient of
waves reflected by the potential is an interesting tool for studying nonlin-
ear inversion because the inverse problem has a stunningly simple solution
[Marchenko, 1955; Burridge, 1980]. This inverse problem is of direct rele-
vance in the earth sciences; both the inverse problem of geomagnetic in-
duction [Weidelt, 1972] as well as the seismic reflection problem [Burridge,
1980; Newton, 1981] can be reformulated similar to the problem treated
in this section. For the Schrödinger equation the wavefield ψ satisfies the
following differential equation:

ψxx +
(
k2 − V (x)

)
ψ = 0 . (141)

Let the reflection coefficient after a Fourier transform to the time domain
be denoted by R(t). The potential V (x) at a fixed location x follows from
the reflection coefficient by solving the Marchenko equation:

K(x, t) +R(x+ t) +

∫ x

−t
K(x, τ)R(τ + t)dτ = 0 , (142)

for K(x, t) and carrying out a differentiation:

V (x) = −2
dK(x, x)

dx
. (143)

In figure 18 the results of a numerical solution of the Marchenko equa-
tion is shown. The potential is shown by a thick solid line. For this potential
the reflection coefficient is computed and the potential is reconstructed by
numerically solving the Marchenko equation (142) and carrying out the dif-
ferentiation (143), details of the calculation can be found in [Dorren et al.,
1994]. The reconstructed potential of figure 18 (top panel) is on the scale
of the figure indistinguishable from the true potential. In figure 18 (bottom
panel) the same synthetic experiment is shown, the only difference is that
the potential has been multiplied with a factor 2.5. If the problem would
be linear, the reflection coefficients would be 2.5 times as strong as for the
potential in the top panel and the reconstructed potential would also be
2.5 times as strong. This would lead to a near-perfect reconstruction of the
potential. However, the reconstructed potential is given by the dashed line.
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Figure 18. The original potential (solid lines) and the potential reconstructed with the
Marchenko equation (dashed lines). The potential in the bottom panel is 2.5 times as
strong as the potential in the top panel.

It can be seen that the left part of the potential (the side from which the
waves are incident) the potential is reconstructed quite well, but that the
part of the potential on the right is very poorly reconstructed. According
to the reasoning above, the potential would have been reconstructed quite
well if the problem had been linear. This implies that the instability in the
reconstructed potential is due to the non-linearity of the problem.

The physical reason for this instability can relatively easy be under-
stood. It follows from the Schrödinger equation (141) that the effective
wavenumber is given by

√
k2 − V (x). When k2 < V (x) the wavenumber

is complex which reflects the fact that the waves are evanescent when the
potential energy is larger than the total energy. In that case the wavefield
decays exponentially within the potential. For a fixed energy k2 the wave-
field is more evanescent for the potential in the bottom panel of figure 18
than for the potential in the top panel of that figure, simply because the
potential energy is 2.5 times as high. This has the result that the wave-field
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penetrates further in the potential in the top panel than in the potential
in the bottom panel of figure 18. Obviously, the potential in a certain re-
gion is not constrained by the recorded wavefield if the wavefield does not
sample the potential in that region. The strong evanescence of the waves
in the potential in the bottom panel of figure 18 imlpies that that parts
of that potential are effectively not sampled by the waves. In that case,
the numerical details of the algorithm, including the numerical round-off
error determine the reconstructed potential in that region. The essential
point is that the values of the model parameters affect the way in which
the wavefield interrogates the model.

Physically, the instability in the reconstructed potential in figure 18 can
thus be understood. However, what does this imply for the inverse problem?
What happens physically if the potential on the left side is high, is that the
wavefield is prevented from sampling the potential on the right part. This
means that for some values of the model parameters (that describe how
high the potential is on the left), other model parameters (that describe
the potential on the right) are unconstrained by the data. In terms of a
misfit function this implies that the misfit does not depend on the model
parameters that describe the right side of the potential (when the left side
of the potential is high). In other words, the misfit function does not have a
minimum, but is has a broad plateau. Note that as an additional complexity
this only occurs for certain values of other model parameters (that describe
how high the potential is on the left).

7.2. EXAMPLE 2, NON-LINEARITY AND SEISMIC TOMOGRAPHY

A second example of the ill-posedness introduced by the non-linearity in
inverse problems is seismic tomography. Consider a cross-borehole tomo-
graphic experiment where rays travel from a source in a well to a string of
receivers on another well. The case where the velocity is homogeneous is
shown in the left panel of figure 19. In that case the rays are straight lines
that travel from the source on the left to receivers R1 through R5 on the
right. If the velocity is not homogeneous, the rays are curved. This implies
that the value of the model parameters determine the way in which the
rays interrogate the model.

Suppose that a low-velocity anomaly is present, see the middle panel of
figure 19. Since the rays of first arrivals are curves of minimal travel time,
the rays curve around the slow-velocity anomaly. If the velocity anomaly
is sufficiently slow, all the rays may completely curve around the slow-
velocity. In that situation the anomaly would not be sampled by any rays
and the velocity within the anomaly cannot be determined because it is
not sampled by any rays. At best one could derive an upper bound for
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Figure 19. (a) Tomographic experiment where the velocity is homogeneous and the rays
are straight. (b) Tomographic experiment where the rays curve around a low-velocity
body. (c) Tomographic experiment where a high-velocity anomaly causes a shadow zone
at the middle receiver.

the velocity within the anomaly. Just as in the previous section, the model
parameters affect the way in which the probe (in this case the rays) samples
the model. In terms of the misfit function this implies that for a certain
range of model parameters, the misfit function does not depend on the
model parameters at all, in other words: the misfit function in completely
flat over an extended range of parameter values.

Let us now consider the opposite situation where a high-velocity anomaly
is present, see the right panel of figure 19. Rays will be defocused by a high
velocity body and a shadow-zone is formed behind the anomaly. This may
mean that there is no ray that will hit the receiver R3, see the question mark
in figure 19. This means that for some values of the model parameters it is
impossible to compute the data because the travel time cannot be deter-
mined when there is no ray that hits the receiver. This means that for some
values of the model parameters it is impossible to compute the correspond-
ing data values given the theory that one uses. In this sense one can say that
some values of the model parameters are “forbidden.” It should be noted
that this is not a complexity created in some exotic thought-experiment;
the problem of the “missing rays” is a real problem in seismic travel time
tomography [Sambridge, 1990], as well as the tomographic imaging of the
temperature field in ovens [Natterer et al., 1997].

The critical reader might remark at this point that the fact that for
certain values of the velocity model there are no rays hitting the receiver is
due to the fact that ray theory is an approximation to a true theory (wave
theory), and that wave theory predicts that some energy will diffract into
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the shadow-zones. Although this is correct, one should also note that the
wavefield in the shadow zones is very weak (that is why they are called
shadow zones) and that in practice this diffracted wavefield is usually not
detectable.

8. Model appraisal for nonlinear inverse problems

In the previous section the effect of non-linearity on model estimation has
been discussed. In this section an attempt is made to describe the effect
of non-linearity on the appraisal problem where one wants to describe how
the estimated model is related to the true model (see figure 2). However, it
should be stressed that there is presently no general theory to deal with the
appraisal problem for a truly nonlinear inverse problem with infinitely many
degrees of freedom. In practice, one often linearizes the problem around
the estimated model and then uses linear theory to make inferences about
the resolution and reliability of the estimated model. The lack of a general
theory for the appraisal problem should be seen as a challenge for theorists!
In this section three attempts are described to carry out model assessment
for a nonlinear inverse problem. These attempts follow the lines of formal
theory (section 8.1), a numerical approach (section 8.2) and a pragmatic
approach (section 8.3).

8.1. NONLINEAR BACKUS-GILBERT THEORY

Linear Backus-Gilbert theory is based on the equations (72)-(74) for lin-
ear inverse problems for continuous models. The model estimate m̃(x) at
location x is constructed by making the linear superposition (73) of the
data. The resolution kernel in equation (74) specifies the relation between
the estimated model and the true model. In the ideal case the resolution
kernel is a delta function. Backus and Gilbert [1967, 1968] have shown that
the criterion that the resolution kernel should resemble a delta function as
much as possible can be used to determine the coefficients ai(x) in equa-
tion (73) which prescribes how a datum di affects the estimated model at
location x .

Backus-Gilbert theory has been generalized by Snieder [1991] for the
special case that the forward problem can be written as a perturbation
series:

di =

∫
G

(1)
i (x)m(x)dx +

∫∫
G

(2)
i (x1, x2)m(x1)m(x2)dx1dx2 + · · · (144)

In a number of applications such a perturbation series arises naturally. Im-
portant examples are the Neumann series (101) in scattering theory where
the scattering data are written as a sum of integrals that contain succes-
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sively higher powers of the model perturbation, or ray perturbation theory
where the travel time of rays is written as a sum of integrals with increas-
ing powers of the slowness perturbation [e.g. Snieder and Sambridge, 1993;
Snieder and Aldridge, 1995]. When the forward problem is nonlinear, the
inverse problem is non-linear as well, this suggest that for a non-linear in-
verse problem the linear estimator (73) should be generalized to include
terms that are nonlinear in the data as well:

m̃(x) =
∑

i

a
(1)
i (x)di +

∑

i,j

a
(2)
ij (x)didj + · · · (145)

The key of non-linear Backus-Gilbert theory is to insert the expansion
of the forward problem (144) in the estimator (145). The result can then
be written as:

m̃(x) =

∫
R(1)(x;x1)m(x1)dx1+

∫∫
R(2)(x;x1, x2)m(x1)m(x2)dx1dx2+· · · .

(146)
This expression generalizes the linear resolution kernel of equation (74) to
nonlinear inverse problems. The kernel R(1)(x;x1) describes to what extent
the estimated model is a blurred version of the true model. The higher order
kernels such as R(2)(x;x1, x2) can be interpreted as nonlinear resolution
kernels that describe to what extent there is a spurious nonlinear mapping
from the estimated model onto the true model in the inversion process.

In the ideal case, the estimated model is equal to the true model:
m̃(x) = m(x). This is the case when the linear resolution kernel R(1)(x;x1)
is a delta function δ(x− x1) and when the nonlinear resolution kernels are
equal to zero: R(n)(x;x1, · · · , xn) = 0 for n ≥ 2. However, as in equation
(75) the linear resolution kernel R(1)(x;x1) can be written as a sum of a
finite amount of data kernels G(1)(x1). Since a delta function cannot be
obtained by summing a finite amount of smooth functions, the linear reso-
lution kernel can never truly be a delta function. This reflects the fact that
with a finite amount of data the estimated model will be a blurred version
of the true model. Snieder [1991] treats the inverse problem of the determi-
nation of the mass-density of a vibrating string from the eigenfrequencies
of the string. He shows that if only a finite amount of eigenfrequencies are
available, the nonlinear resolution kernels cannot be zero. This implies that
the finiteness of the data set leads to a spurious nonlinear mapping from
the true model to the estimated model. This can be related to the sym-
metries of the problem and to mode coupling “off the energy shell.” The
finite width of the linear resolution kernel and the fact that the nonlinear
resolution kernels are nonzero imply not only that the estimated model is
a blurred version of the true model, but also that the estimated model is
biased. The reader is referred to Snieder [1991] for details. In that work
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it is also described how the coefficients a(i) in the estimator (145) can be
determined.

Although nonlinear Backus-Gilbert theory is a new tool for dealing with
the assessment problem for nonlinear inverse problems, one should realize
that the theory can only be applied to weakly nonlinear problems where
a (very) few orders are sufficient for an accurate description of both the
forward and the inverse problem. In addition, the theory of Snieder [1991]
is so complex that a reformulation is needed to make the theory applicable
to the large-scale inverse problems that are being treated in practice.

It is important to realize that any regular (nonlinear) mapping from data
di to an estimated model m̃(x) can be written in the form of expression
(145). The details of the employed algorithm then determine the coefficients

a
(n)
i1···in . The resolution analysis shown in equation (146) and the subsequent

discussion therefore is applicable to the estimated model. The conclusions
concerning the linear and nonlinear resolution kernels can thus be used for
any regular mapping from the data to the estimated model.

8.2. GENERATION OF POPULATIONS OF MODELS THAT FIT THE
DATA

Another approach to asses the reliability of estimated models is to gener-
ate not a single model that fit the data within a certain tolerance but to
obtain an ensemble of models that fits the data within a certain tolerance
[e.g. Lomax and Snieder, 1995]. An alternative approach is to compute the
misfit for a very large class of models and to use the data fit, possibly in
combination with Bayesian statistics to make inferences about the range
of models that explain the data in a certain sense [e.g. Mosegaard and
Tarantola, 1995; Gouveia and Scales, 1998, Mosegaard, 1998]. Obviously,
this approach requires a numerical approach to create such ensembles, but
with present day computers significance progress has been made.

An important concept in the generation of ensembles of models is the
randomness in the search method that one employs. A descent method con-
tains no element of randomness whatsoever, whereas a Monte Carlo search
where one randomly samples model space is completely random. In be-
tween are algorithms which have both, a random component as well as a
mechanism to prefer models that fit the data well. Examples of such algo-
rithms are simulated annealing [Krikpatrick et al., 1983; Rothman, 1985]
or genetic algorithms [Sambridge and Drijkoningen, 1992; Sen and Stoffa,
1992; Lomax and Snieder, 1995]. A promising technique is the adaptive
search [Mosegaard and Tarantola, 1995] where in the process of carrying
out a random search, information about the misfit function is being built
up, and this misfit function is then used to drive the random search in an
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intelligent way.
The main merit of algorithms that determine an ensemble of models

together with information on how well each model explains the data is
that this ensemble can be used to make inferences about the model. These
inferences may or may not be statistical. The possibility to analyse such
ensembles of models in a meaningful way has not yet been fully exploited.
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Figure 20. The true velocity model (broken curve) and an ensemble of models generated
by a Monte Carlo search that fit surface wave group velocity data with a realistic tolerance
(solid lines).

An example is shown from a study of Douma et al. [1996]. In their study
synthetic group velocity data of the fundamental mode Rayleigh wave that
propagates along the earth’s surface were computed for periods between 10
and 300 s The true velocity model is shown as the dashed line in figure 20 as
a function of depth. A Monte Carlo search was used to find models of the S -
velocity that were consistent with the data within a realistic measurement
error. The resulting population of models is shown in figure 20. In this
study, the S-velocity was deliberately over-parameterized. As a result, the
resulting models are highly oscillatory and contain strong trade-offs. The
aim of the study of Douma et al. [1996] was to extract the robust features of
the velocity model from the ensemble of models shown in figure 20. This was
achieved by computing “Empirical Orthogonal Functions” (EOF’s) from
this ensemble. These functions give the patterns with the different degrees
of variability within an ensemble.
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The EOF’s can be used to re-parameterize the model space in an intel-
ligent way that reflects how well model perturbations are constrained by
the data. Alternatively, the EOF’s could be used to carry out a statisti-
cal analysis of the ensemble of models that explains the data. However, as
noted by Douma et al. [1996] the EOF techniques is only useful for inverse
problems that are weakly nonlinear.

8.3. USING DIFFERENT INVERSION METHODS

In the previous sections, a theoretical and a numerical method for model
appraisal were presented. Apart from these more formal approaches, “com-
mon sense” is a powerful tool for carrying out model assessment. An im-
portant way to asses the reliability of a model is to determine the model
in different ways. In the ideal case, different data sets are used by different
research groups who use different theories to estimate the same proper-
ties. The agreement of disagreement between these models can be used as
an indicator of the reliability of these models. It is admittedly difficult to
quantify the sense of reliability that is thus obtained, but in the absence
of an adequate theory to carry out model assessment for nonlinear inverse
problems (and remember that we don’t have such a theory) this may be
the best approach.

An example of this approach is shown in figure 21. Nonlinear wave-
form inversion using the Partitioned Waveform Inversion of Nolet [1990]
has been used by van der Hilst and Kennett [1997] to determine a three-
dimensional model of the S -velocity under Australia. A cross section of
the model at a depth of 140 km is shown by the colors in figure 21. In
such an inversion, averages of the earth structure along long paths are used
to determine the local variations in the S -velocity. Effects such as errors
in the source mechanisms of the employed earthquakes, seismic anisotropy
that is not accounted for in the inversion, variations in the path coverage
and the path direction over the domain of inversion can lead to artifacts in
the inversion. As a way of verifying the reliability of the solution, Passier
et al. [1997] determined the local S-velocity using the waveform inversion
method described by Passier and Snieder [1995]. In this method, a con-
sistency requirement of the waveforms recorded in two nearby stations is
used to estimate the horizontally averaged velocity between the stations as
a function of depth. Just as the technique used by van der Hilst and Ken-
nett [1997] this technique may lead to models with artifacts, but in general
these artifacts will be different, see Passier et al. [1997] for a discussion.

The interstation S -velocity models are shown in the panels in figure
21. In these panels the depth range is from the surface down to a depth
of 250 km, whereas the S -velocity ranges from -5% to +5%. The symbol
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Figure 21. The S-velocity anomaly under Australia at a depth of 140 km obtained by
surface wave tomography by van der Hilst and Kennett [1997] where the relative velocity
perturbation is shown by the colour bar at the bottom. The interstation S-velocity ob-
tained by Passier et al. [1997] is shown in the panels. The S-velocity in panels ranges from
-5% to +5% and is shown from the surface down to a depth of 250 km. The employed
stations for each panel are indicated that corresponds with the symbol in the upper-right
corner of each panel.

in each panel (circle, triangle, etc.) corresponds to the employed stations
that are marked on the map with the same symbol. The depth-profile in
each panel shows the S -velocity between the corresponding stations. By
comparing the interstation velocity models shown in the panels with the
velocity model shown in colors one can see that the locally determined S -
velocity agrees well with the S -velocity obtained from the 3D tomographic
inversions. Consider for example the S -velocity between the stations in the
northeast marked with solid dots that is shown in the panel with the solid
dot. At a depth of about 140 km the interstation shear velocity is about
-2.5%. This agrees well with the S -velocity obtained from 3D tomography
that is indicated with the colors.

A comparison as presented in this section is very useful for assessing
the reliability of models in a qualitative way. In this sense, a healthy com-
petition between different research groups is an important ingredient in
the appraisal of models. There is one pitfall in the approach to compare
models obtained from different data sets and different inversion methods;
it is possible that both models are in error but that they agree with each
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other. The comparison of models may thus provide a false impression of
their reliability. However, in practice this test often is a useful pointer to
artefacts in (at least one of) the models. An example of this approach is
given by Passier et al. [1997].

9. Epilogue

Linear inverse problem theory is an extremely powerful tool for solving
inverse problems. Much of the information that we currently have on the
Earth’s interior is based on linear inverse problems. The success of modern-
day oil exploration for an affordable price is to a large extent possible
because of our ability to use imaging techniques that are based on single
scattering theory to map oil reservoirs. One could argue that the modern
world, which heavily relies on cheap access to hydrocarbons, might have a
drastically different form if single scattering would not explain seismic data
so well.

Despite the success of linear inverse theory, one should be aware that
for many practical problems our ability to solve inverse problems is largely
confined to the estimation problem. This may surprise the reader, because
for linear inverse problems the resolution kernel and the statistics of linear
error propagation seem to be adequate tools for carrying out the model as-
sessment. However, as noted in section 2, in order to compute the resolution
kernel one needs to explicitly define the generalized inverse A−g. For many
problems, this entails inverting the matrix ATA or an equivalent matrix
that contains regularization terms as well. This task is for many important
problem, such as imaging seismic reflection data, not feasible.

The results of section 8 show that for nonlinear inverse problems both
the estimation problem and the appraisal problem are much more difficult.
In the context of a data-fitting approach, the estimation problem amounts
to a problem of nonlinear optimization. Researchers can use the results of
this field of mathematics to solve the estimation problem. However, the
reader should be aware of the fact that there is presently no theory to
describe the appraisal problem for nonlinear inverse problems. Developing
a theoretical framework for the appraisal of models obtained from nonlinear
inversion of data is a task of considerable complexity which urgently needs
the attention of the inverse problem community.

Acknowledgments: Discussions with John Scales and Jean-Jacques Lévêque
have helped to clarify a number of issues, we appreciate their input very
much.
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