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PREFACE 

This book is based at the level of a bachelor's degree in physical science. Experience 
at Stanford indicates that a one-semester class in engineering systems theory provides 
helpful additional background. It will be readable to a general science and engineering 
audience and should be useful to anyone interested in computer modeling and data 
analysis in physical sciences. 

Inevitably, the book is strongly flavored by my own research interests which are 
presently mainly in reflection seismology. However, I have taken an interest in a good 
many of the data processing problems in general geophysics that have arisen in eight 
years of teaching graduate students and supervising research. This book is intended to 
be a textbook rather than a research monograph. The exercises are of a reasonable 
degree of difficulty for first-year graduate students, and most of them have been 
thoroughly tested. Since its first publication in 1976, and subsequent translation to 
Russian and Chinese, this book has become the most widely-referenced textbook in 
journal articles on exploration geophysics. No other book gives so complete an account 
of the fundamentals of geophysical data processing. Recently Blackwell Scientific 
Publications offered to reprint the book, so I took advantage of the opportunity to 
rewrite the preface and introduction, and to update the references. 

The subject of discrete-time filters is easier than calculus and provides the needed 
platform, usually provided by calculus, to explore many concepts from physics and 
engineering. Concepts expressed in discrete time are already prepared for computers, 
thus engineering and science professionals are no longer diverted by analytic solutions, 
but by computer methods. Now with computers in every room, a curriculum that 
leaves every thought expressed in the continuum is simply out of date. The real "new 
math" should not be set theory but elementary calculus reexpressed in discrete form. 

Fundamentals of Geophysical Data Processing takes the mathematical part of the 
undergraduate physics and engineering curricula and translates it into a form digestible 
by computers. So this is not only a book on geophysical analysis but also a book for 
any analysis in modern science and engineering. The book is required in our geophys- 
ics graduate curriculum because the present science and engineering undergraduate 
curriculum has hardly yet entered the computer age. 



X PREFACE 

Geophysical data processing draws from mathematical physics, numerical analysis, 
and statistics. Fundamentals of Geophysical Data Processing develops its theme from 
a base of the general undergraduate science curriculum and deductions tend to be 
complete and self sufficient. This book was originally directed to the Bachelor's degree 
level; however, many students at that level find the book is too terse for self-study, so I 
have included a new study guide, Imaging the Earth's Interior (IEI), which supersedes 
the last two chapters of Fundamentals of Geophysical Data Processing (FGDP). For 
several years the new book was taught after FGDP. I taught the material in that order 
because the material was developed in that way and it seemed natural to teach one- 
dimensional analysis before teaching multidimensional analysis. Subsequently, the 
order of the courses was reversed and now I teach migration and velocity from IEI 
before teaching filters and deconvolution from FGDP. The reasons for this are first, 
multidimensional analysis is more geometrical and less algebraic, so it is naturally 
somewhat more appealing to most students and second, the theory in IEI provides a 
realistic guide to migration and velocity analysis in practice, whereas no book, neither 
FGDP nor the books by Ziolkowski or Treitel provides an equally satisfactory practical 
guide for deconvolution. 

Engineering is about things that work most of the time, like migration and velocity 
analysis in IEI. Science is about things that are basic, things that should always be true 
but are often difficult to show convincingly, things that may require judgment in 
practical cases, like deconvolution and inversion, the major practical applications of 
FGDP. 

I am indebted to a great many friends, associates, and former teachers for much of 
what I have learned. I have had many fruitful conversations with Steve Simpson, 
Enders Robinson, and John Burg about time series analysis. Ted Madden taught me 
much of what is written in this book on stratified media, but most importantly he 
infected me with the idea that the time had come to go beyond stratified media. John 
Sherwood and Francis Muir introduced me to reflection seismic prospecting and some 
unorthodox ways of thinking about it. Several generations of students were a great 
help in getting many of the "bugs" out of the text and the exercises. Phil Schultz, Don 
C. Riley and Steve Doherty prepared many of the figures in the final chapters. Mrs. 
Susana Erlin typed most of the manuscript and finally got the effort all together. My 
wife, Diane, inspired the continuing effort the project required. 

Thanks for financial support is due mainly to Stanford University and the Chevron 
Oil Field Research Company, but also to the Petroleum Research Fund of the 
American Chemical Society, the National Science Foundation, and the Air Force 
Office of Scientific Research. Support from the sponsors of the Stanford Exploration 
Project (SEP) enabled the rapid development of wave equation seismic data processing 
introduced in the last chapter. These sponsors were: Amoco, Arco, Chevron, Conti- 
nental, Digicon, Dutch Shell, Elf Aquitane-France, Exxon, GSI, INA-Yugoslavia, 
Mobil, Petrofina-Belgium, Petty Ray, Preussag-Germany, Seiscom Delta, Seis- 
mograph Service, Shell, Sun, Teledyne, Texaco, Total-France, Union, U. S. Geolog- 
ical Survey, United Geophysical and Western Geophysical. 

JON F. CLAERBOUT 

January 5,1985 



INTRODUCTION 

Geophysical data processing is the use of computers for the analysis of geophysi- 
cal data. A major task in geophysics is to determine as much as possible about the 
constitution of the interior of the earth. Where direct penetration is impractical or 
impossible, seismological, electromagnetic, and gravity measurements are made 
and the task of making inferences from these measurements is begun. Through 
systematic application of the laws of physics and the principles of statistics, some of 
these interpretation tasks can be computerized. When the number of observations 
is small, it may be satisfactory to match them to the adjustable parameters in known 
analytic solutions to the equations of classical physics. Today, however, it is 
common to have massive numbers of observations which contain far more informa- 
tion about the earth than can be modeled by analytic solutions. A typical reflection 
seismic marine survey ship can collect about a trillion (1012) bits of information 
per month. 

Such massive amounts of data require both statistical reduction and the ability 
to compute theoretical solutions in many-parameter earth models. Use of digital 
computers to statistically analyze geophysical data began with the Geophysical 
Analysis Group (GAG), an industry-supported project at the Massachusetts 
Institute of Technology which ran from 1953 to 1957 [Ref. 11. Theoretical geophys- 
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ical calculations made a  great step forward in 1954 when Norman Haskell 
[Ref. 21 published a famous paper in which he showed how seismic surface waves 
could be computed for an earth modeled by an arbitrary number of plane parallel 
layers, each with arbitrarily prescribed physical properties. This enabled utilization 
of the entire seismic waveform in fitting an arbitrarily stratified earth model. (By 
" stratified" it is meant that material properties are a function of one coordinate 
only, usually the depth or radius). Haskell's method has been intensively developed 
over the last twenty years to the point where we can now readily compute seismic 
and electromagnetic responses to arbitrary source distributions in any desired 
stratified model of the earth. Indeed, it seems that the stratified medium has 
nearly replaced the homogeneous medium as the most popular framework for 
publication in mathematical geophysics. 

Seismograms often consist of hundreds of oscillations, most of which may be 
inexplicable. Elaborate methodologies have evolved for fitting seismograms 
to stratified media models with random variations on layer parameters and data. 
It is astonishing, however, to observe that explosion seismograms with all their 
complicated, inexplicable details are completely reproducible. Even earthquake 
seismograms will be reproducible when the source region is small. Thus, the intro- 
duction of random variables into data analysis often serves mainly to force fit the 
data to stratified models. 

In contrast to our well developed stratified media tools, most of the questions 
presently being asked about the earth are really questions about its departure from 
the stratified model. Foremost are the matters of verifying the mechanics of con- 
tinental drift, understanding earthquakes, and seeking to locate petroleum and 
minerals. Thus, today, the frontiers in geophysical data processing lie in the recon- 
ciliation of field data with two- and three-dimensionally inhomogeneous models of 
the earth. But before we start we need a good foundation in the traditional material. 

Geophysical data processing begins with the study of the sampled time form of 
filter theory and spectral analysis. The mathematical restraints imposed by the 
principle of causality are very important. Even arbitrarily complex models of the 
earth are subject to this principle. Computational stability often hinges on per- 
fectly strict adherence to it. Then basic concepts of resolving power, statistics, 
and matrices are reviewed preparing the reader for the general theory of least 
squares along with lots of examples. Least squares has been, of course, the principal 
vehicle for the reconciliation of data with theoretical models. While it remains in 
this prominent role, high-resolution techniques (maximum entropy) and robust 
techniques (the L, norm and linear programming) are challenging it. 

Following this development of fundamental data processing ideas, the rest of the 
book is concerned with treating earth models of successively increasing complexity. 
First, we study multiple reflected plane waves in layered media from a base of only 
continuity, causality, and energy conservation (no more physics than that). Waves 
may be calculated from knowledge of the media and the media can be calculated 
from the waves. Then, the more general theory of mathematical-physical computa- 
tions in stratified media is introduced and the essential features of finite-difference 
simulations of partial differential equations are surveyed. 



The final chapters are devoted to wave extrapolation and data processing with 
partial differential equations. I developed this material with my graduate students 
over the past six years at Stanford University (see Refs. [3] to [8] and [36] and [37]). 
The basic objective is like that in holography. A wave field is observed on a plane (the 
surface of the earth) and the goal is to create a two- or three-dimensional model of the 
scattering objects to one side of (beneath) the plane. The main problems and the 
techniques used are quite different from holography. Velocity inhomogeneity, diffrac- 
tion, interference, and multiple reflection are ubiquitous features of seismic propaga- 
tion though they are rare in common visual experience. The eye is easily deceived in a 
house of mirrors or when looking into an aquarium. 

As I predicted in the original preface to this book, the material on wave-equation 
data processing developed rapidly. In 1985 it became the subject of a new book, 
IMAGING THE EARTH'S INTERIOR also published by Blackwell Scientific 
Publications. 



TRANSFORMS 

The first step in data analysis is to learn how to represent and manipulate waveforms 
in a digital computer. Time and space are ordinarily regarded as continuous, but for 
purposes of computer analysis we must discretize them. This discretizing is also 
called digitizing or sampling. Discretizing continuous functions may at  first be 
regarded as an evil that is necessary only because our data are not always known 
analytic functions. However, after gaining some experience with sampled func- 
tions, one realizes that many mathematical concepts are easier with sampled time 
than with continuous time. For example, in this chapter the concept of the Z 
transform is introduced and is shown to be equivalent to the Fourier transform. 
The Z transform is readily understood on a basis of elementary algebra, whereas the 
Fourier transform requires substantial experience in calculus. 

1-1 SAMPLED DATA AND Z TRANSFORMS 

Consider the time function graphed in Fig. 1-1. 
T o  analyze such an observed time function in a computer it is necessary to approxi- 
mate it in some way by a list of numbers. The usual way to do this is to evaluate 
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FIGURE 1-1 
A continuous time function sampled at uniform time intervals. 

or observe b(t) at a uniform spacing of points in time. For this example, such a 
digital approximation to the continuous function could be denoted by the vector 

Of course if time points were taken more closely together we would have a more 
accurate approximation. Besides a vector, a function can be represented as a poly- 
nomial where the coeficients of the polynomial represent the values of b(t) at 
successive time points. In this example we have 

This polynomial is called a Z transform. What is the meaning of Z in this poly- 
nomial? The meaning is not that Z should take on some numerical value; the 
meaning of Z is that it is the unit delay operator. For example the coefficients of 
Z B ( Z )  = Z + 2 Z 2  - Z4 - Z 5  are plotted in Fig. 1-2. It is the same waveform as in 
Fig. 1-1, but it has been delayed. 
We see that the time function b, is delayed n time units when B ( Z )  is multiplied by 
2". The delay operator Z is very important in analyzing waves simply because 
waves take a certain amount of time to get from place to place. 

FIGURE 1-2 
Coefficients of Z B(Z) are a shifted version of the coefficients of B(Z). 
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FIGURE 1-3 
Response to two explosions. 

Another value of the delay operator is that it may be used to build up more 
complicated time functions from simpler ones. Suppose b(t) represents the acoustic 
pressure function or the seismogram observed after a distant explosion. Then b(t) 
is called the impulse response. If another explosion occurs at t = 10 time units 
after the first, we expect the pressure function y(t) depicted in Fig. 1-3. 

In terms of Z transforms this would be expressed as Y(Z) = B(Z) + z"B(z). 
If the first explosion were followed by an implosion of half strength, we would have 
B(Z) - +Z1O~(Z). If pulses overlap one another in time [as would be the case if 
B(Z) was of degree greater than 101, the waveforms would just add together in the 
region of overlap. The supposition that they just add together without any inter- 
action is called the linearity assumption. This linearity assumption is very often true 
in practical cases. In seismology we find that-although the earth is a very hetero- 
geneous conglomeration of rocks of different shapes and types-when seismic 
waves (of usual amplitude) travel through the earth, they do not interfere with one 
another. They satisfy linear superposition. The plague of nonlinearity arises from 
large amplitude disturbances. Nonlinearity does not arise from geometrical 
complications. 

Now suppose there was an explosion at t = 0, a half-strength implosion at 
t = 1, and another, quarter-strength explosion at t = 3. This sequence of events 
determines a "source" time series, x, = ( I ,  -4, 0, a). The Z transform of the 
source is X(Z) = 1 - 32 + $Z3. The observed y, for this sequence of explosions 
and implosions through the seismometer has a Z transform Y(Z) given by 

The last equation illustrates the underlying basis of linear-system theory that the 
output Y(Z) can be expressed as the input X(Z) times the impulse response B(Z). 

There are many examples of linear systems. A wide class of electronic 
circuits is comprised of linear systems. Complicated linear systems are formed by 
taking the output of one System and plugging it into the input of another. Suppose 
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FIGURE 1-4 
Two equivalent filtering systems. 

x ( t )  - 

we have two linear systems characterized by B(Z) and C(Z), respectively. Then the 
question arises whether the two combined systems of Fig. 1-4 are equivalent. 
The use of Z transforms makes it obvious that these two systems are equivalent 
since products of polynomials commute, i.e., 

Yl(Z) = [X(Z)B(Z)]C(Z) = XBC (1-1-3) 

B ( Z )  

Y2(Z) = [X(Z)C(Z)]B(Z) = XCB = XBC (1- 1-4) 

Input Output 

Consider a system with an impulse response B(Z) = 2 - Z - z2. This polynomial 
can be factored into 2 - Z - Z2 = (2 + Z)(l - Z), and so we have the three equiv- 
alent systems in Fig. 1-5. Since any polynomial can be factored, any impulse 
response can be simulated by a cascade of two-term filters (impulse responses 
whose Z transforms are linear in 2). 

What do we actually do in a computer when we multiply two Z transforms 
together? The filter 2 + Z would be represented in a computer by the storage in 
memory of the coefficients (2, 1). Likewise, for 1 - Z the numbers ( 1 ,  - 1) are 
stored. The polynomial multiplication program should take these inputs and 
produce the sequence (2, - 1, - 1). Let us see how the computation proceeds in a 
general case, say 

X(Z)B(Z) = Y(Z) (1-1-5) 

- 
x (0 - 

FIGURE 1-5 
Three equivalent filtering systems. 

C ( Z )  - 

C ( Z )  

r - ~ ~ ( t )  

: B ( Z )  , + Y* 0 )  
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DO 20 J = l , L B  
FIGURE 1-6 
A computer program to do convolution. 20 Y (I+J-1) = Y (I+J-1) + x(I)*B(J)  

Identifying coefficients of successive powers of Z, we get 

Equation (1-1-8) is called a convolution equation. Thus, we may say that the 
product of two polynomials is another polynomial whose coefficients are found by 
convolution. A simple Fortran computer program which does convolution, includ- 
ing end effects on both ends, is shown in Fig. 1-6. The reader should notice that 
X(Z) and Y ( Z )  need not strictly be polynomials; they may contain both positive 
and negative powers of Z ;  that is, 

The effect of using negative powers of Z in X(Z) and Y(Z) is merely to indicate that 
data are defined before t = 0. The effect of using negative powers of Z in the filter is 
quite different. Inspection of (1-1-8) shows that the output y, which occurs at time 
k is a linear combination of current and previous inputs; that is, (xi, i 2 k). If the 
filter B(Z) had included a term like b-,/Z, then the output yk at  time k would be a 
linear combination of current and previous inputs and xk+,,.an input which really 
has not arrived at  time k. Such a filter is called a nonrealizable filter because it 
could not operate in the real world where nothing can respond now to an excitation 
which has not yet occurred. However, nonrealizable filters are occasionally useful 
in computer siml~lations where all of the data are prerecorded. 



EXERCISES 

1 Let B(Z) = 1 + Z + ZZ + Z3 + Z4. Graph the coefficients of B(Z) as a function of 
the powers of 2. Graph the coefficients of [B(Z)IZ. 

2 If xt = cos oo t, where t takes on integral values b, = (bo , bl) and Y(Z) = X(Z)B(Z), 
what are A and Bin y,=Acos wot+  Bs inoo t?  

3 Deduce that, if x, = cos w0 t and b, = (bo, bl, . . . , b,), then y, always takes the form 
Acos mot+ Bsin wot. 

1-2 2-TRANSFORM TO FOURIER TRANSFORM 

We have defined the Z transform as 

If we make the substitution Z = ei" we have a " Fourier sum" 

This is like a Fourier integral, and we could obviously do  a limiting operation to 
make it into an integral. Another point of view is that the Fourier integral 

reduces to the sum (1-2-2) when b(t) is not a continuous function of time but is 
defined as 

where 6 is the Dirac delta function. 
In the last section we saw that to multiply two polynomials the coefficients 

must be convolved. The same process in Fourier transform language is that a 
product in the frequency domain corresponds to a convolution in the time domain. 

Although one thinks of a Fourier transform as an integral which may be 
difficult or impossible to do, the Z transform is always easy, in fact trivial. To do a 
Z transform one merely attaches powers of Z to successive data points. When one 
has B(Z) one can refer to  it either as a time function or a frequency function, 
depending on whether one graphs the polynomial coefficients or if one evaluates and 
graphs B(Z = ei") for various frequencies o. The reader should observe that as o 
goes from zero to 2x, Z = ei" = cos o + i sin o migrates once around the unit circle 
in the counterclockwise direction. 

If taking a Z transform amounts to attaching powers of Z to successive points 
of a time function, then the inverse Z transform must be merely identifying coeffi- 
cients of various powers of Z with different points in time. How can this simple 
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" identification of coefficients " be the same as the apparently more complicated 
operation of inverse Fourier integrals ? The inverse Fourier integral is 

First notice that the integration of Zn about the unit circle or einm over 
- n I cu < + n gives zero unless n = 0 because cosine and sine are oscillatory; that 
is, 

1 einw 

z, S. do =- I SR (cos n o  + i sin no) do 
2n -, 

(1-2-6) 
(1 i f n  = O  - - 10 if n = non-zero integer 

In terms of our discretized time functions, the inverse Fourier integral (1-2-5) is 

Of all the terms in the integrand (1-2-7) we see by (1-2-6) that only the term with b, 
will contribute to the integral; all the rest oscillate and cancel. In other words, it is 
only the coefficient of Z to the zero power which contributes to the integral, 
reducing (1 -2-7) to 

This shows how inverse Fourier transformation is just like identifying coefficients of 
powers of Z. 

In this book and many others, it is common to assume that the time span 
between data samples At  = 1 is unity. To adapt given equations to other values of 
At, one only need replace cu by o At;  that is, 

With Z transforms we have the spectrum given on a range of 2n for cuboo, . In 
the limit At,,,, goes to zero, cut,,, has the same infinite limits as the Fourier integral. 

When a continuous function is approximated by a sampled function, it is 
necessary to take the sample spacing At,,,, small enough. The basic result of 
elementary texts is that, if there is no appreciable energy in a Fourier transform for 
frequencies higher than some frequency om,,, then there is no appreciable loss of 
information if the sample spacing is At  = ?~/o,,, . In other words, a cosine wave 
must be sampled at least two points per wavelength. Figure 1-7a shows how insuffi- 
cient sampling of a sine wave often causes it to appear as a sine wave of lower 
frequency. 

Next we wish to examine oddleven symmetries to see how they are affected in 
Fourier transformation. The even part e, of a time function b, is defined as 



FIGURE 1-7a 
If a high-frequency sinusoid is sampled insufficiently often, it becomes indistin- 
guishable from a lower-frequency sinusoid. For this reason w,,, = r / A t  is said to 
be the folding frequency, as higher frequencies are folded down to look like lower 
frequencies. In practice, quasi-sinusoidal waves are always sampled more fre- 
quently than twice per wavelength. Good theoretical reasons for sampling eight 
or more points per wavelength are developed on pp. 44 to 47. 

The odd part is 

A function is the sum of its even and odd parts. By adding (1-2-10) and (1-2-1 1), we 
get 

b, = e, + o, (1-2-12) 

Consider a simple, real, even time function such as (b-,, bo , b,) = (1, 0, 1). Its 
transform Z + l / Z  = 2 cos o is an even function of o since cos o = cos ( -a ) .  Con- 
sider the real, odd time function (b-, , bo , b,) = (- 1,0, I). Its transform Z - 1 / Z  = 

2(sin o) / i  is imaginary and odd, since sin o = - sin (- o) .  Likewise, the transform 
of the imaginary even function (i, 0, i) is the imaginary even function i cos o and the 
transform of the imaginary odd function (- i, 0, i) is real and odd. Let r and i refer 
to real and imaginary, e and o refer to even and odd, and lower-case and upper-case 
refer to time and frequency functions. A summary of the symmetries of Fourier 
transformation is shown in Fig. 1-7b. 

More elaborate time functions can be made up by adding together the two 
point functions we have considered. Since sums of even functions are even, and so 
on, the table of Fig. 1-7b applies to all time functions. Note that an arbitrary time 
function takes the form b, = (re + ro) + i(ie + io), . On transformation of b, , each 
of the four individual parts transforms according to the table. 

cos 
re +----t RE 

cos 
ie - IE 

FIGURE 1-7b 
Mnemonic table illustrating how even/ io sinb I 0  
odd and reallimaginary properties are 
affected by Fourier transformation. ( b )  
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EXERCISES 

1 Normally a function is specified entirely in the time domain or entirely in the fre- 
quency domain. When one is known, the other is determined by transformation. 
Now let us give half the information in the time domain by specifying that 6 ,  = 0 for 
t < 0, and half in the frequency domain by giving the real part RE + RO in the 
frequency domain. How can you determine the rest of the function? 

1-3 THE FAST FOURIER TRANSFORM 

When we write the expression 

B(Z) = bo + blZ + ... (1-3-1) 

we have both a time function and its Fourier transform. If we plot the coefficients 
(bo , b,, . . .), we plot the time function. If we evaluate and plot (1-3-1) at  numerous 

- - 

real w,  then we have plotted the transform. (Note that for real o, Z is of unit 
magnitude; i.e., on the unit circle.) Since o is a continuous variable and everything 
in a computer is finite, how do we select a finite number of values ok for plotting? 
The usual choice is to take evenly spaced frequencies. The lowest frequency can be 
zero. [Note Z(o = 0) = eiO = 1 .] A frequency as high as o = 271 [note Z ( o  = 2n) = 
e i2n - - 1 also] need not be considered, since (1-3-1) gives the same value for it as for 
zero frequency. Choosing uniformly spaced frequencies between these limits we 
have 

where M is some integer. Now let us abbreviate B(Z(o,)) as Bk. 
For the special case of an N-point time function where N = 4, (1-3-1) may be 

expressed by the matrix multiplication 

where 
w = e2nilN (1-3-4) 

It is not essential to choose N = M as we have done in (1-3-3), but it is a convenience. 
There is no loss of generality because one may always append zeros to a time func- 
tion before inserting it into (1-3-3). A convenience of the choice N = M is that the 
matrix in (1-3-3) will then be square and there will be an exact inverse. In fact, the 
inverse to (1-3-3) may be easily shown to be 
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Since 11 W is the complex conjugate of W, the matrices of (1-3-3) and (1-3-5) 
are just complex conjugates of one another. In fact, one observes no fundamental 
mathematical difference between time functions and frequency functions. This 
" duality" would be even more complete if we had used a scale factor of N - ' I 2  in 
each of (1-3-3) and (1-3-5) rather than 1 in (1-3-3) and N in (1-3-5). Note also 
that time functions and frequency functions could be interchanged in the mnemonic 
table describing symmetries. In fact, our earlier observation that the product of 
two frequency functions amounts to a convolution of the corresponding two time 
functions has a dual statement that the product of two time functions corresponds 
to the convolution of the corresponding two frequency functions. We will not 
" prove " this duality as it is standard fare in both mathematics and systems theory 
books. However we will occasionally call upon the reader to realize that in any 
theorem the meanings of " time " and "frequency " may be interchanged. 

In making a plot of the transform Bk for (k = 0, 1, . . . , M - 1) the frequency 
axis ranges as 0 < ok < 2n. It is often more natural to display the interval 
-n < o < n. Since the transform is periodic with period 2n, values of Bk on the 
interval n I o < 2n may simply be moved to the interval - n I o < 0 for display. 

Thus, for N = 8 one might plot successively 

corresponding to values of equal to 

One advantage of this display interval is that for continuous time series which are 
sampled sufficiently densely in time the transform values Bk get small on both ends. 
If the time series is real, the real part of B, has even symmetry about Bo ; the imagin- 
ary part has odd symmetry about Bo. Then, one need not bother to display half 
the values. Choice of an odd value of N would enable us to put o = 0 exactly in the 
middle of the interval, but the reader will soon see why we stick to an even number 
of data points. 

The matrix times vector operation in (1-3-3) requires N, multiplications and 
additions. The rest of this section describes a trick method, called the fast Fourier 
transform, of accomplishing the matrix multiplication in N log, N multiplications 
and additions. Since, for example, log2 1024 is 10, this is a tremendous saving in 
effort. 

A basic building block in the fast Fourier transform is called doubling. Given 
a series (xo , x,, . . . , xN-,) and its sampled Fourier transform (Xo , XI, . . . , XN-,) 
and another series (yo, y,, . . . , y,v- ,) and its transform (Yo, Y, ,  . . . , Y,-,), one finds 
the transform of the interlaced double-length series 

The process of doubling is used many times during the process of computing a fast 
Fourier transform. As the word doubling might suggest, it will be convenient to 
suppose that N is an integer formed by raising 2 to some integer power. Suppose 
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N = 8 = 23. We begin by dividing our eight-point series xo ,  x,, . . . , x, into eight 
different series of one point each. The Fourier transform of each of the one-point 
series is just the point. Next, we use doubling four times to get the transforms of the 
four different two point series (xo, x,), (x,, x,), (x2, x,), and (x,, x,). We use 
doubling twice more to get the transforms of the two different four point series 
(x0 , x 2 ,  x4 , x ~ )  and (x,, x, , x, , x,). Finally, we use doubling once more to get the 
transform of the original eight-point series (xo, x,, x, , . . . , x,). 

It remains to look into the details of the doubling process. 
Let 

The transforms of two N-point series are by definition 

The transform of the interlaced series z j  = (xo, yo, x,, y,, . . . , xN-,, yN-,) is by 
definition 

To make Zk  from Xk and Yk we require two separate formulas: one for 
k = 0 ,  1 , . . . ,  N - l , a n d t h e o t h e r f o r k = N , N + I  , . . . ,  2N-1.  

First 

We split the sum into two parts, noting that xj  multiplies even powers of V and y j  
multiplies odd powers. 

We obtain the last half of the Zk by 
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SUBROUTINE FORK(LX,CX,SIGNI) 
C FAST FOURIER 2/15/69 
C LX 
C CX(K) = SQRT ( 1 1 ~ ~ )  SUM (CX(J)*EXP (2*PI*SIGNI*I* (J-1)* (K-1) /LX)) 
C J=1 FOR K=1,2, ..., (LX=2**INTEGER) 

COMPLEX CX (LX) , CARG , CEXP , CW, CTEMP 
J=1 
SC=SQRT (1. /LX) 
DO 30 I=l,LX 
IF(1.GT.J) GO TO 10 
CTEMP=CX (J) *SC 
CX(J)=CX(I)*SC 
CX (I)=CTEMP 

10 M=LX/2 
20 IF(J.LE.M) G O T 0  30 

J=J-M 
M=M/ 2 
IF(M.GE.l) GO TO 20 

30 J=J+M 
L=l 

40  ISTEP=2*L 
DO 50 I\I=l,L 
CARG=(O. ,1. )*(3.14159265*SIGNI*(M-1))/L 
CW=CEX? (CARG) 
DO 50 I=PI,LX, ISTEP 
CTEMP=CW*CX (I+L) 
cx (I+L ) =CX ( I  ) -CTEMP 

50 CX (I)=CX (I)+CTEMP 
L=ISTEP , 
IF(L.LT.LX) GO TO 40  
RETURN 
END 

FIGURE 1-8 
A program to do fast Fourier transform. Modified from Brenner. Calling this 
program twice returns the original data. SIGN1 should be + 1. on one call and 
- 1. on the other. LX must be a power of 2. 

= X" - vm Y,, 

Zk= Xk-,- V ~ - N  Y (k = N , N  + 1 ,  ..., 2N-  1) (1-3-9) 

The first machine computation with this algorithm known to the author 
was done by Vern Herbert, who used it extensively in the interpretation of reflection 
seismic data. He programmed it on an IBM 1401 computer at Chevron Standard 
Ltd., Calgary, Canada in 1962. Herbert never published the method. It was 
rediscovered and widely publicized by Cooley and Tukey in 1965. Thus it has come 
to be known as the Cooley and Tukey algorithm. (A good reference to literature 
on the subject is Ref. [9].) 

EXERCISES 

y Verify that for an arbitrary N x N case the matrix of (1-3-5) is indeed the inverse of -* 
the matrix of (1-3-3). 



In Out 

FIGURE 1-9. 
A sinusoid sin wt goes into a filter and a delayed sinusoid sin (o t  - 4) comes out. 

1-4 PHASE DELAY AND GROUP DELAY 

Some filters make drastic changes to signals propagating through. Other filters do 
their best to make little or no change. In the latter category are transducers and 
recorders. In such cases, the principal form of signal change may be merely delay. 
One way to characterize the delay of a filter is to put in a sinusoid and compare its 
phase to that of the output. See Fig. 1-9. 

If the input is sin cut and the output is sin (cut .- 6 )  then the so-called phase 
delay t, is given by solving 

sin (cut - 6 )  = sin o(t - t,) 

A more interesting kind of delay is called group delay. It is analogous to group 
velocity in wave propagation theory. Indeed, in the modeling of wave propagation 
on a computer the propagation of a wave from say point A to point B may be 
simulated with a filter. 

When the waveshape observed at A differs from that at point B but the energy 
envelope at A resembles with delay that at B, then we have a situation where the 
idea of group velocity, meaning the energy envelope velocity, may be very useful. 
The sum of two cosine waves of slightly differing frequencies will beat together. 
Refer to Fig. 1-10. 

When such a waveform goes through a filter, each frequency may suffer a 
different delay and the result will be that the envelope or beat will have a delay which 
differs from the phase delay of either frequency. The envelope delay, or group 
delay, may not even resemble the average of the phase delays of the two frequencies. 
We may understand this as follows: The input waveform x,  is 
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t-A+ 
FIGURE 1-10 
A graph of cos w,t + cos w2t looks like an amplitude-modulated cosine of the 
average frequency. 

By using a trigonometric identity 

we see that the sum of two cosines looks like a cosine of the average frequency 
multiplied by a cosine of half the difference frequency. Since the frequencies are 
taken close together, the difference frequency factor represents a slowly variable 
amplitude on the average frequency. Now let us take the output of the filter j), to be 

y, = cos (wit - 4,) + cos (0, t - 4,) (1-4-4) 

In taking the output of the filter to be of the form of (1-4-4), we have assumed that 
neither frequency was attenuated. To allow differential attenuation of the two 
frequency components would greatly complicate the discussion. Utilizing the same 
trigonometric identity on (1-4-4), we get 

y, = 2 cos t -  41 + 42) cos (01 - 0 2  

2 2 
t -  " - ',) (1-4-5) 

2 

Rewriting the beat factor in terms of a time delay t , ,  we have 

cos [@I ; "' (t - t,) = cos 1 ("' ; t -  
2 - 42) 

or  the group delay is given by 



In practice one never has two pure cosines but a band of frequencies. The group 
delay is then a frequency-dependent function given by t, = d$/du,. The phase 
angle 4 may be computed as the arctangent of the ratio of imaginary to real parts of 
the Fourier transform, namely +(a) = arctan [Im B(o)/Re B(co)]. It is sometimes 
convenient to recall the definition of complex logarithm. Say, 

A convenient approximation when B is sampled in a computer is 

An important aspect of wave propagation theory is the distinction of phase 
velocity from group velocity. These are similar to phase delay and group delay. For 
example, if waves propagate along a two-dimensional surface, the phase function 
may be given by 

Here (x,, yo) is the location of the filter input and (x, y) is where the phase is 
observed (like the filter output). The symbols k, and k, denote the "spatial fre- 
quencies," that is, k, is 2n divided by the wavelength measured along the x axis. 
Methods of theoretical physics provide a relationship between u, and kx and k,. 
Often it can be explicitly given in the form 

= ~ ( k ,  , k,) (1-4- 10) 

Since velocity is distance divided by time we can define the phase velocity 
along the x direction as 

X - Xo 
(' phase)x = phase delay 
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For the x component of group velocity 

X - X o  

(' group)x = group delay 

du, 
= ( X  - x0) - 

d4 
(1-4-1 1) 

Say y = y o ,  then (1-4-9) reduces to 

which gives 

and together with (1-4-1 1) gives 

am akx am 
(V group), = (x - xo) - - = - (1-4-12) 

ak, a+ ak, 

Thus the vector group velocity is (doldk,, dolak,). It sometimes happens that 
physical theory is so complicated that an explicit relationship like (1-4-10) cannot 
be found and one gets instead a complicated implicit relation, say 0 = F(m, k, , k,). 
In such a case it is useful to  recall the relationship from the theory of partial 
derivatives : 

In observational geophysics the velocity one deals with is nearly always the 
group velocity. It is the velocity with which bundles of energy move. In the example 
shown in Fig. 1-1 1 there is an excessive amount of" noise " (not unusual in observa- 
tional geophysics); however, it can be seen that the disturbance first displays the 
long-period oscillations and then the shorter-period oscillations. The group 
velocity is found by dividing the distance by the time of arrival. One could observe 
phase velocities by having two observation stations near each other and measuring 
the time delay of some particular zero crossing. The reason for having the stations 
near one another is that the waveforms are steadily changing, and if the stations are 
too far apart, it may not be possible to tell which zero crossings are to be compared. 

1-5 CORRELATION AND SPECTRA 

The spectrum of a time function is the magnitude squared of the Fourier transform 
of the function. In the case of a real function, the Fourier transform has an even 
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FIGURE 1-11 
An example of a wave packet in which different frequencies may be seen propa- 
gating at different speeds. This example is of two air-pressure waves thought to 
result from nuclear explosions in Asia; they were recorded in California on one 
of the author's microbarographs. 

real part RE and an imaginary odd part 10 .  Taking the squared magnitude, one 
has (RE + iIO)(RE - iIO) = (RE)2 + (10)'. The square of an even function is 
obviously even and the square of an odd function is also even. Thus, the spectrum 
of a real time function is even so that its values at plus frequencies are the same as 
its values at minus frequencies. In other words, there is no special meaning to be 
attached to negative frequencies. 

Although most time functions which arise in applications are real time 
functions, a discussion of correlation and spectra is not mathematically complete 
without considering complex-valued time functions. Furthermore, complex-valued 
time functions can be extremely useful in many physical problems in which rotation 
occurs. For example consider two vector-component wind-speed indicators: one 
pointing north, recording n, , and the other pointing west, recording w, . Now if one 
makes up a complex-valued time series v, = n, + iw,, the magnitude and phase 
angle of the complex numbers have obvious physical interpretation. The (RE + iIO) 
part of the transform relates to n, and the (RO + ilE) part relates to w t .  The 
spectrum, however, is (RE + ~ 0 ) ~  + (IE + IO)', which is neither even nor odd, 
and the fact that V(+o) # V(-o) must have some interpretation. Indeed it does, 
and the meaning is that + o corresponds to rotation in one sense (counterclockwise) 
and (- o )  to rotation in the other direction. To  see this, suppose n, = cos ( a o  t + 4)  
and w, = -sin ( a o  t + 4). Then v, = e-i("0'+4). The transform is 
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A V ( W )  

FIGURE 1-12 
Spectrum of the complex time series 
e-"oot +@,* b 

0 Wo W 

The spectrum S2(o - coo) is shown in Fig. 1-12. 
Conversely, if w,  were sin ( a o  t + 4), then the spectrum would have been a delta 
function at  -oo ,  meaning that the wind velocity vector is rotating the other way. 
Other examples of complex time series in geophysics are 

I Yielding of the elastic earth to the gravitational attraction of the moon 
causes local ground tilt. The north-south tilt could determine an x, time 
series, and the east-west tilt could determine a y, time series. Then x, + iy, 
would tend to have one rotational sense in the northern hemisphere and the 
opposite sense in the southern hemisphere. 
2 Vertical and horizontal seismograph motions could make up a complex 
time series. 
3 Nutation of the earth's figure axis about the angular momentum axis 
(Chandler Wobble). 
4 Rotational polarizations of an electromagnetic wave. 

Let us look at  the spectrum in terms of Z transforms. Let the spectrum be 
R(co), where 

Let us express this in terms of a three-point Z transform: 

R(o) = (60 + 5,e-'" + 6, e-i2")(bo + bleiU + b2 ei2") (1-5-4) 

It is of interest to multiply out the polynomials B(l/Z) with B(Z) in order to examine 
the coefficients of R(Z). 



The coefficient rk of Zk is given by 

rk = C Ei bi+k (1-5-9) 
i 

Equation (1-5-9) is known as the autocorrelation formula. The autocorrelation 
value rk at lag 10 is rl0 . It  is a measure of the similarity of bi with itself shifted 
10 units in time. In the most frequently occurring case, bi is real; then by inspection 
of (1-5-7) or (1-5-9) one sees that the autocorrelation coefficients are real and 
rk = r- ,  . With the specialization to  real time series, then, we have 

R(Z) = ro + rl(ei" + e-'") + r2(ei2" + e-i20) (1-5-11) 

R(Z) = ro + 2r1 cos cl, + 2r2 cos 2cl, (1-5-12) 

R(Z) = rk cos k (1-5-13) 
k 

R(Z) = cosine transform of rk (1-5-14) 

We have just shown what is a fairly difficult theorem in continuous time 
textbooks, namely that the cosine transform of the autocorrelation equals the 
magnitude squared of the Fourier transform. There are two computationally 
distinct methods to compute a spectrum: ( I )  Compute the rk coefficients from 
(1-5-9) once, then form the cosine sum (1-5-13); or (2) evaluate B(Z) for some value 
of Z on the unit circle, and multiply the resulting number by its complex conjugate. 
Repeat for many values of Z on the unit circle. The second method is the cheapest 
because the fast Fourier transform may be used. 

The concept of autocorrelation and spectrum is easily generalized to  cross- 
correlation and cross spectrum. Consider two Z transforms A(Z) and B(Z). Then 
the cross spectrum C(Z) is defined by 

If some particular coefficient ck in C(Z) is greater than any of the others, then it 
may be said that the waveform a, most resembles the waveform b, if one is delayed k 
time units with respect to the other. 

EXERCISES 

.# Suppose a wavelet is made up of complex numbers. Is the autocorrelation relation 
rk = r -  true ? Is rk real or complex ? Is R(o) real or complex ? 

2 Let x, be some real time function. Let y, = x t + ~  be another real time function. Sketch 
the phase as a function of frequency of the cross spectrum X ( l / Z )  Y(Z)  as computed 
by a computer which put all arctangents in the principal quadrants - ~ / 2  < arctan < 
7~12. Label axis scales. '< If concepts of time and frequency are interchanged, what does the meaning of spectrum 
become ? 
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1-6 HILBERT TRANSFORM 

A filter which converts sines into cosines is called a 90" phase shift filter or a quadra- 
ture filter. More specifically if the input is cos ( o t  + 4 , ) ,  then the output should be 
cos ( o t  + 4 ,  + ~ 1 2 ) .  Such a filter can be useful in constructing the envelope of a 
time function. Let X(Z) denote the Z transform of a real data series, Q(Z)  denote a 
quadrature filter, and let Y(Z)  = Q(Z)X(Z)  be the output of the quadrature filter. 
Then the envelope time function may be defined by e,  = (xt2 + yr2)l t2.  Alterna- 
tively, one could construct a complex time function u, = x ,  + iy, . In terms of Z 
transforms we have 

U(Z)  = [l + iQ(Z)]X(Z)  

Now u,u, represents the squared envelope function. Likewise the phase 4 ,  as a 
function of time may be defined as 4 ,  = arctan ( y , /x , ) .  The instantaneous frequency 
is d4ldt .  This may be approximated in the following way. 

2 u, - u,- l  
z Im- 

At U ,  + ut-1 

Now that we have some idea what a 90" phase shift filter can be used for, 
let us find out the numerical values of q , .  The time derivative operation has the 
desired 90" phase-shifting property we seek. The trouble with a differentiator is that 
higher frequencies are amplified with respect to lower frequencies. Specifically 

f ( t )  = j ~ ( o ) e -  d o  

Thus we see that time differentiation corresponds to the weight factor - icc, in the 
frequency domain. The weight - iw has the proper phase but the wrong amplitude. 
The desired weight factor is Q ( o )  = - i o /  1 o 1 .  It is the step function shown in 
Fig. 1-13. 

t iQ(w) (= real) 

FIGURE 1-13 
Frequency response of 90" phase-shifting filter. 
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FIGURE 1-14 

9. = ( 0 for n even 
- 2/an for n odd 

Quadrature filter. I 

Let us transform Q(w) into the time domain 

i O =-I e-'" dw -%lo i T  - i o n  dm 
2n -, 

for n even 
- 2/nn for n odd 

The result is shown in Fig. 1-14. 
Since the filter does not vanish for negative n, this is obviously a nonrealizable 
filter (one which requires future inputs to create its present output). If the discussion 
were in continuous time rather than sampled time, the filter would be of the form 
1 It, a function which has a singularity at t = 0 and whose integral over + t is diver- 
gent. Convolution with the filter coefficients qn is therefore very awkward because 
the infinite sequence drops off very slowly. Convolution with the filter q is called 
Hilbert transformation. 

Let us return to the filter 1 + iQ(Z) mentioned earlier. As shown in Fig. 1-15, 
this filter is simply a step function in the frequency domain. A cheap way to achieve 
the 90" phase shift operation is to do it in the frequency domain. One begins with 
x, + i - 0  and transforms it to the frequency domain. Then multiply by the step of 
Fig. 1-15. Finally, inverse transformation gives x, + iy,. The progress of even, 
odd, real, and imaginary parts is detailed in Fig. 1-16. 
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FIGURE 1-15 
The filter 1 + iQ(Z) is real and one-sided 
in the frequency domain but complex 
and two-sided in the time domain. 

FIGURE 1-16 
Hilbert tratlsform or quadrature filtering 
by step weight in the frequency domain. 

FIGURE 1-17 
Impulse plus i times a 90" phase-shift filter becomes a real step in the frequency 
domain. 



The function 1 + iQ plays a special role in theoretical time series analysis 
which, in later chapters, will be shown to be related to the principle of causality. 
For future reference we summarize the properties of this function in Fig. 1-17. 

EXERCISES 

I By means of partial fractions convolve the waveform 

(2/77)(. . . , - +, 0, -+, 0, - 1 , 0, 1, 0, 4, 0, *, . . .) 
G$ 

with itself. What is the interpretation of the fact that the result is (. . . , 0, 0, - 1,O 
0, . . .)? (HINT: n2/8 = 1 +$ +A -t& + . . . ). 

2 In terms of the fast Fourier transform matrix the quadrature filter Q(o) may be 
. represented by the column vector 

Multiply this into the inverse transform matrix to show that the transform is propor- 
tional to (cos rrk/N)/(sin rk/N). What is the scale factor? Sketch it for k < N indicat- 
ingthelimit N + m .  [HINT: 1 + x + x 2 + ~ . . x N = ( 1  - x N + l  )/(I - XI.] 



ONE-SIDED FUNCTIONS 

All physical systems share the property that they do not respond before they are 
excited. Thus the impulse response of any physical system is a one-sided time 
function (it vanishes before t = 0). In system theory such a filter function is called 
realizable. In wave propagation this property is associated with causality in that 
no wave may begin to arrive before it is transmitted. The lag-time point t = 0 
plays a peculiar and an important role. For this reason, many subtle matters will 
be much more clearly understood with sampled time than with continuous time. 
When a filter responds at and after lag time t = 0, we will say the filter is realizable 
or causal. The word causal is appropriate in physics where stress may cause (prac- 
tically) instantaneous strain and vice versa, but one should revert to the more 
precise words realizable or one-sided when using filter theory to describe economic 
or social systems where simultaneity is quite different from cause and effect. 

2-1 INVERSE FILTERS 

To understand causal filters better, we now take up the task of undoing what a 
causal filter has done. Consider that the output y ,  of a filter b,  is known but the 
input x ,  is unknown. See Fig. 2-1. 



FIGURE 2-1 
Sometimes the input to a filter is un- 
known. 

This is the problem that one always has with a transducerlrecorder system. 
For example, the output of a seismometer is a wiggly line on a piece of paper from 
which the seismologist may wish to determine the displacement, velocity, or 
acceleration of the ground. To undo the filtering operation of the filter B(Z), we 
will try to find another filter A(Z) as indicated in Fig. 2-2. 

To solve for the coefficients of the filter A(Z), we merely identify coefficients 
of powers of Z in B(Z)A(Z) = 1. For B(Z), a three-term filter, this is 

X  ( Z )  = unknown 

(ao + alZ + a, z2 + a3 Z3 + . . .)(bo + b,Z + b2 Z2) = 1 (2-1-1) 

The coefficients of ZO, Z', Z2, . . . in (2-1-1) are 

From (2-1-2) one may get a, from bo. From (2-1-3) one may get a, from a, and 
the 6,. From (2-1-4) one may get a, from a,, a,, and the b, . Likewise, in the 
general case a, may be found from a,-, , a,-, , and the b, . Specifically, from 
(2-1-7) the a, may be determined recursively by 

B ( Z )  

Consider the example where B(Z) = 1 - 212; then, by equations like (2-1-2) 
to (2-1-7), by the binomial theorem, by polynomial division, or by Taylor's power 
series formula we obtain 

Y  ( Z )  = known - b 

1 z z2 2 3  
A ( Z )  = = 1 + - + - + - +... (2-1-9) 

1 - 212 2 4 8  

x ( Z )  FIGURE 2-2 
The filter A ( Z )  is inverse to the filter 

X ( z )  + B ( Z )  Y ( z )  =- 
HZ). 

A ( Z )  



FIGURE 2-3 
Factoring the polynomial B(Z) breaks the filter into many two-term filters. Each 
one should have a bounded inverse. 

Factors of B 

We see that there are an infinite number of filter coefficients but that they drop off 
rapidly in size so that approximation in a computer presents no problem. The 
situation is not so rosy with the filter B(2) = 1 - 22. Here we obtain 

Inverse factors of B 

The coefficients of the series increase without bound. The outputs of the filter 
A(2) depend infinitely strongly on inputs of the infinitely distant past. [Recall that 
the present output of A(2) is a, times the present input x, plus a, times the previous 
input x,-,, etc., so a, represents memory of n time units earlier.] The implication 
of this is that some filters B(2) will not have useful finite approximate inverses 
A(Z) determined from (2-1-2) to  (2-1-8). We now seek ways to identify the good 
filters from the bad ones. With a two-pulse filter, the criterion is merely that the first 
pulse in B(2) be larger than the second. A more mathematical description of the 
state of affairs results from solving for the roots of B(Z), that is, find values of 2, 
for which B(2,) = 0. For the example 1 - 212 we find Z0 = 2. For the example 
1 - 22,  we find 2, = 3. The general case for wavelets with complex coefficients 
is that, if the solution value 2, of B(Z,) = 0 lies inside the unit circle in the complex 
plane, then l/B(Z) will have coefficients which blow up; and if the root lies outside 
the unit circle, then the inverse l/B(Z) will be bounded. 

Recalling earlier discussion that a polynomial B(Z) of degree N may be 
factored into N subsystems and that the ordering of subsystems is unimportant 
(see Fig. 2-3), we suspect that if any of the N roots of B(2) lies inside the unit 
circle we may have difficulty with A(2). Actual proof of this suspicion relies on a 
theorem from complex-variable theory about absolutely convergent series. The 
theorem is that the product of absolutely convergent series is convergent, and 
conversely the product of any convergent series with a divergent series is divergent. 
Another proof may be based upon the fact that a power series for l/B(Z) converges 
in a circle about the origin with a radius from the origin out to the first pole [the 
zero of B(2) of smallest magnitude]. Convergence of A(2) on the unit circle means, 
in terms of filters, that the coefficients of A(2) are decreasing. Thus, if all the 
zeros of B(2) are outside the unit circle, we will get a convergent filter from (2-1-8). 

Can anything at  all be done if there is one root or  more inside the circle? 
An answer is suggested by the example 



Equation (2-1-1 1) is a series expansion in 112, that is, a Taylor series about infinity. 
It converges from Z = cn all the way in to a circle of radius 112. This means that 
the inverse converges on the unit circle where it must, if the coefficients are to be 
bounded. In terms of filters it means that the inverse filter must be one of those 
filters which responds to future inputs and hence is not physically realizable but 
may be used in computer simulation. 

In the general case, then, one must factor B(Z) into two parts: B(Z) = 

Bout(Z)Bin(Z) where Bout contains roots outside the unit circle and Bin contains the 
roots inside. Then the inverse of Bout is expressed as a Taylor series about the origin 
and the inverse of Bin is expressed as a Taylor series about infinity. The final 
expression for l/B(Z) is called a Laurent expansion for l/B(Z), and it converges 
on a ring surrounding the unit circle. Cases with zeros exactly on the unit circle 
present special problems. Sometimes you can argue yourself out of the difficulty 
but at other times roots on or even near the circle may mean that a certain computing 
scheme won't work out well in practice. 

Finally, let us consider a mechanical interpretation. The stress (pressure) in 
a material may be represented by x, , and the strain (volume change) may be repre- 
sented by y, .  The following two statements are equivalent; that is, in some situ- 
ations they are both true, and in other situations they are both false: 

STATEMENT A The stress in a material may be expressed as a linear combination of 
present and past strains. Likewise, the strain may be deduced from present and 
past stresses. 

STATEMENT B The filter which relates stress to strain and vice versa has all poles 
and zeros outside the unit circle. 

EXERCISES 

1 Find the filter which is inverse to (2 - 5 Z  + 22'). You may just drop higher-order 
powers of Z,  but an exact expression for the coefficients of any power of Z is preferred. 
(Partial fractions is a useful, though not necessary, technique.) Sketch the impulse 
response. 

2 Show that multiplication by (1 - Z )  in discretized time is analogous to time differ- 
entiation in continuous time. Show that dividing by (1 - Z )  is analogous to inte- 
gration. What are the limits on the integral? 

3 Describe a general method for determining A(Z) and B(Z) from a Taylor series of 
B(Z)/A(Z) = Co + C I Z  + C2 Z2 + . . . + Cm Zm where B(Z) and A(Z) are polynomials 
of unknown degree n and m, respectively. Work out the case C(Z) = 4 -2Z - 
$ZZ - &Z3 - &Z4 - - . Don't try this problem unless you are quite familiar with 
determinants. [HINT : Identify coefficients of B(Z) = A(Z)C(Z) .I 

2-2 MINIMUM PHASE 

In Sec. 2-1 we learned that knowledge of convergence of the Taylor series of 
l/B(Z) on J Z J  - 1 is equivalent to knowledge that B(Z) has no roots inside the 
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FIGURE 2-4 - * 
Real and imaginary parts of the Z trans- w 

form 1 - Z/ (1.25 e'2"13). 

unit circle. Now we will see that these conditions are also equivalent to a certain 
behavior of the phase of B(Z) on the unit circle. 

Let us consider the phase shift of the two-term filter 

By definition, phase is the arctangent of the ratio of the imaginary part to the real 
part. 

A graph of phase as a function of frequency looks radically different for p c 1 
than for p > 1. See Fig. 2-4 for the case p > 1. 

AIm B 

/- \ 

FIGURE 2-5 
Phase of the two-term filter of Fig. 2-4. 



FIGURE 2-6 
The phase of a two-term minimum- 
phase filter. 

The phase is the arctangent of Im B/Re B. The easiest way to keep track of 
the phase is in the complex B plane. This is shown in Fig. 2-5. 

Thus phase as a function of frequency is shown in Fig. 2-6. Notice that the 
phase 4 at o = 0 is the same as the phase at  o = 2n. This follows because the real 
and imaginary parts are periodic with 271. The situation will be different when 
there is a zero inside the unit circle; that is, p < 1. The real and imaginary parts 
are shown in Fig. 2-7 and the complex plane in Fig. 2-8. 

The phase 4 increases by 27r as o goes from zero to 2n because the circular 
path surrounds the origin. The phase curve is shown in Fig. 2-9. The case p > 1 
where 4(o)  = 4 ( o  + 27r) has come to be called minimum phase or minimum delay. 

Now we are ready to  consider a complicated filter like 

(Z - c,)(Z - c2) . . 
B(Z) = (2-2-1) 

(Z - a,)(Z - a,) . . 
By the rules of complex-number multiplication the phase of B(Z) is the sum of the 
phases in the numerator minus the sum of the phases in the denominator. Since we 
are discussing realizable filters the denominator factors must all be minimum 
phase, and so the denominator phase curve is a sum of curves like Fig. 2-6. The 
numerator factors may or may not be minimum phase. Thus the numerator phase 
curve is a sum of curves like either Fig. 2-6 or Fig. 2-9. If any factors at  all are like 
Fig. 2-9, then the total phase will resemble Fig. 2-9 in that the phase at w = 2n will 
be greater than the phase at o = 0. Then the filter will be nonminimum phase. 

2-3 FILTERS IN PARALLEL 

We have seen that in a cascade of filters the filter polynomials are multiplied 
together. One might conceive of adding two polynomials A(Z) and G(Z) when they 
correspond to filters which operate in parallel. See Fig. 2-10. 

When filters operate in parallel their Z transforms add together. We have 
seen that a cascade of filters is minimum phase if, and only if, each element of the 
product is minimum phase. Now we will see a sufficient (but not necessary) 
condition that the sum A(Z) + G(Z) be minimum phase. First of all, let us assume 
that A(Z) is minimum phase. Then we may write 
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FIGURE 2-7 
Real and imaginary parts of the two- 
term nonminimum-phase filter, 
1 - 1.25 Z e ~ ' ~ " ' ~ .  

R e B  

FIGURE 2-8 
Phase in complex plane. 

FIGURE 2-9 
The phase of a two-term nonminimum-phase filter. 
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In 
Y ( Z )  = [ A  ( Z )  + G (Z)1 X ( Z )  

b Out 

FIGURE 2-10 
Filters operating in parallel. 

The question of whether A ( Z )  + G ( Z )  is minimum phase is now reduced to deter- 
mining whether A ( Z )  and 1 + G ( Z ) / A ( Z )  are both minimum phase. We have 
assumed that A ( Z )  is minimum phase. Before we ask whether 1 + G ( Z ) / A ( Z )  is 
minimum phase we need to be sure that it's causal. Since l / A ( Z )  is expandable in 
positive powers of Z  only, then G ( Z ) / A ( Z )  is also causal. We will next see that a 
sufficient condition for 1 + G ( Z ) / A ( Z )  to be minimum phase is that the spectrum of 
A  exceeds that of G  at all frequencies. In other words, for any real o, 1 A  I > ( GI. 
Thus, if we plot the curve of G ( Z ) / A ( Z )  in the complex plane, for real 0 < o I 2n 
it lies everywhere inside the unit circle. Now if we add unity-getting 1 + G(Z)/ 
A ( Z ) ,  the curve will always have a positive real part. See Fig. 2-1 1. Since the 
curve cannot enclose the origin, the phase must be that of a minimum-phase 
function. In words, "You can add garbage to  a minimum-phase wavelet if you do  
not add too much." This somewhat abstract theorem has an immediate physical 
consequence. Suppose a wave characterized by a minimum phase A ( Z )  is emitted 
from a source and detected at a receiver some time later. At a still later time an 
echo bounces off a nearby object and is also detected at  the receiver. The receiver 
sees the signal Y ( Z )  = A ( Z )  + Z  " a A ( Z )  where n measures the delay from the first 
arrival to the echo and a  represents the amplitude attenuation of the echo. To see 
that Y ( Z )  is minimum phase, we note that the magnitude of Zn is unity and that the 
reflection coefficient a  must be less than unity (to avoid perpetual motion) so that 
Z n a A ( Z )  takes the role of G ( Z ) .  Thus a minimum-phase wave along with its echo is 
minimum phase. We will later consider wave propagation situations with echoes of 
the echoes ad infiniturn. 

FIGURE 2-1 1 
Phase of a positive real function lies 
between f 4 2 .  



EXERCISES 

1 Find two nonrninimum-phase wavelets whose sum is minimum phase. 
2 Let A(Z) be a minimum-phase polynomial of degree N. Let A'(Z) = ZN2(1/Z) .  Locate 

in the complex Z plane the roots of A'(Z). A'(Z) is called maximum phase. [HINT: Work 
the simple case A(Z) = a. + alZ first.] 

3 Suppose A(Z) is maximum phase and that the degree of G(Z) is less than or equal to 
the degree of A(Z). Assume 1 A I > I GI. Show that A(Z) + G(Z)  is maximum phase. 

4 Let A(Z) be minimum phase. Where are the roots of A(Z) + cZNA( l /Z)  in the three 
cases I c 1 < 1, I c 1 > 1, I c 1 = 1 ? ( H I N T :  The roots of a polynomial are continuous 
functions of the polynomial coefficients.) 

2-4 POSITIVE REAL FUNCTIONS 

Two similar types of functions called admittance functions Y(Z)  and impedance 
functions I(Z) occur in many physical problems. In electronics, they are ratios of 
current to voltage and of voltage to current; in acoustics, impedance is the ratio of 
pressure to velocity. When the appropriate electrical network or acoustical region 
contains no sources of energy, then these ratios have the positive real property. To 
see this in a mechanical example, we may imagine applying a known force F(Z) and 
observing the resulting velocity V(Z) .  In filter theory, it is like considering that 
F(Z) is input to a filter Y(Z)  giving output V(Z) .  We have 

This filter Y(Z) is obviously causal. Since we believe we can do it the other way 
around, that is, prescribe the velocity and observe the force, there must exist a 
convergent causal I(Z) such that 

F(Z) = I(Z) V(Z)  (2-4-2) 

Since Y and I  are inverses of one another and since they are both presumed bounded 
and causal, then they both must be minimum phase. 

First, before we consider any physics, note that if the complex number a + ib 
has a positive real part a, then the real part of (a + ib)-' namely a/(a2 + b2) is also 
positive. Taking a + ib to represent a value of Y ( Z )  or I(Z) on the unit circle, we 
see the obvious fact that if either Y or I  has the positive real property, then the 
other does, too. 

Power dissipated is the product of force times velocity, that is 

This may be expressed in terms of Z transforms as 

1 
Power = - coeff of Z0 of V 

2 
(2-4-4) 

= j+, [v($ F(Z)  + F ( $ )  v(z)] dm 22.n -, 
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Using (2-4-1) to eliminate V(Z) we get 

1 1 += 
Power = - - J F (i) [ Y (i) + Y(z)] F(Z) dco 

2271 -, 

We note that Y(Z) + Y(1IZ) looks superficially like a spectrum because the coeffi- 
cient of Zk equals that of Z-k, which shows the symmetry of an autocorrelation 
function. Defining 

(2-4-4) becomes 

' /+ 'R(Z)F(~)F(Z)dw (2-4-6) Power = - - 
2271 - A  

The integrand is the product of the arbitrary positive input force spectrum 
and R(Z). If the power dissipation is expected to be positive at all frequencies (for 
all FF), then obviously R(Z) must be positive at all frequencies; thus R is indeed a 
spectrum. Since we have now discovered that Y(Z) + Y(l/Z) must be positive for 
all frequencies, we have discovered that Y(Z) is not an arbitrary minimum-phase 
filter. The real part of both Y(Z) and Y(I/Z) is 

Since the real part of the sum must be positive, then obviously the real part of each 
of the equal parts must be positive. 

Now if the material or mechanism being studied is passive (contains no 
energy sources) then we must have positive dissipation over a time gate from 
minus infinity up to any time t. Let us find an expression for dissipation in such a 
time gate. For simplicity take both the force and velocity vanishing before t = 0. 
Let the end of the time gate include the point t = 2 but not t = 3. 

Define 

To find the work done over all time we may integrate (2-4-6) over all frequencies. 
To find the work done in the selected gate we may replace F by F' and integrate over 
all frequencies, namely 
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All functions of time + 4 

One-sided functions of time 
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(causal) 

Having finite energy 
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(realizable) 

I Admittance or 

FIGURE 2-12 
Important classes of time functions. 

As we have seen, this integral merely selects the coefficient of Z0 of the integrand. 
Let us work this out. First, collect coefficients of powers of Z in R(Z)F'(Z). We 
have 

To obtain the coefficient of Z0 in F'(l/Z)[R(Z) Ff(Z)] we must multiply the top row 
above by f b ,  the second row by f; and the third row by f;. The result can be 
arranged in a very orderly fashion by 

Not only must the 3 x 3 quadratic form (2-4-9) be positive (i.e., W, 2 0 for 
arbitrary&) but all t x t similar quadratic forms W, must be positive. 

In conclusion, the positive real property in the frequency domain means that 
Y(Z) + Y(l /Z)  is positive for any real and the positive real property in the time 
domain means that all t x t matrices like that of (2-4-9) are positive definite. 
Figure 2-12 summarizes the function types which we have considered. 
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Narrowband 

W 

FIGURE 2-13 
Spectra of various filters. 

n 

EXERCISES 

Bandpass 

1 In mechanics we have force and velocity of a free unit mass related by dvldt = f o r  
u = j'_, f dt. Compute the power dissipated as a function of frequency if integration 
is approximated by convolution with ( . 5 ,  l . ,  I . ,  I . ,  . . .). [HINT: Expand (1 + Z ) /  
2(1 - Z )  in positive powers of 2.1 

2 Construct an example of a simple function which is minimum phase but not positive 
real. 

High pass 

2-5 NARROW-BAND FILTERS 

Filters are often used to modify the spectrum of given data. With input X(Z), 
filter B(Z), and output Y(Z) we have Y(Z) = B(Z)X(Z) and the Fourier conjugate 
F(l/Z) = B(l/Z)X(l/Z). Multiplying these two relations together we get 

which says that the spectrum of the input times the spectrum of the filter equals the 
spectrum of the output. Filters are often characterized by the shape of their 
spectra. Some examples are shown in Fig. 2-13. 

We will have frequent occasion to deal with sinusoidal time functions. A 
simple way to represent a sinusoid by Z transforms is 



FIGURE 2-14 
The time function associated with a simple pole just outside the unit circle at 
Zo = 1 .1  etnls. 

The time function associated with this Z transform is eiWot, but it is "turned on " at 
t = 0. Actually, the left-hand side of (2-5-1) contains a pole exactly on the unit 
circle, so that the series sits on the borderline between convergence and divergence. 
This can cause paradoxical situations [you could expand (2-5-1) so that the sinusoid 
turns off at t = 0] which we will avoid by pushing the pole from the unit circle to a 
small distance E outside the unit circle. Let 2, = (1 + &)eiW0. Then define 

The time function corresponding to B(Z) is zero before t = 0 and is e -  i"Ot/(l + &It 
after t = 0. It is a sinusoidal function which decreases gradually with time accord- 
ing to (1 + &)-'. The coefficients are shown in Fig. 2-14. 
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It is intuitively obvious, although we will prove it later, that convolution with the 
coefficients of (2-5-2), which are sketched in Fig. 2-14, is a narrow-banded filtering 
operation. If the pole is chosen very close to the unit circle, the filter bandpass 
becomes narrower and narrower and the coefficients of B(Z) drop off more and 
more slowly. To actually perform the convolution it is necessary to truncate, that 
is, to drop powers of Z beyond a certain practical limit. It turns out that there is a 
very much cheaper method of narrow-band filtering than convolution with the 
coefficients of B(Z). This method is polynomial division by A(Z). We have for the 
output Y(Z) 

Multiply both sides of (2-5-4) by A(Z) 

Y(Z)A (2) = X(Z) (2-5-5) 

For definiteness, let us suppose the x, and y, vanish before t = 0. Now identify 
coefficients of successive powers of Z. We get 

Y3a0-k yzal +yla2 +yoa, = x 3  

etc. 

A general equation is 

Solving for yk we get 

Equation (2-5-8) may be used to solve for y, once y, -, , y, -, , . . . are known. Thus 
the solution is recursive, and it will not diverge if the a,  are coefficients of a mini- 
mum-phase polynomial. In practice the infinite limit on the sum is truncated 
whenever you run out of coefficients of either A(Z) or Y(Z). For the example we 
have been considering, B(Z) = l/A(Z) = l/(1 - Z/Z,), there will be only one term 
in the sum. Filtering in this way is called feedbackfifiltering, and for narrowband 
filtering it will be vastly more economical than filtering by convolution, since there 



are much fewer coefficients in A(Z) than B(Z) = l/A(Z). Finally, let us examine the 
spectrum of B(Z). We have 

and 

1 - 2 cos ( o  - 0,) 
= 1 +  

(1 + E ) ~  I + &  

1 L 

= 1 +  -- + - [l - cos (u, - oo)J 
1 + E  1 + E  

1 4 , w - 0 ,  
sin 

2 

To a good approximation this function may be thought of as + (u, - 
A plot of (2-5-9) is shown in Fig. 2-15. 

Now it should be apparent why this is called a narrowband filter. It amplifies 
a very narrow band of frequencies and attenuates all others. The frequency window 
of this filter is said to be A o  z 2 2 in width. The time window is At  = 1 / E ,  the damp- 
ing time   on st ant of the damped sinusoid b, . 

One practical disadvantage of the filter under discussion is that although its 
input may be a real time series its output will be a complex time series. For many 
applications a filter with real coefficients may be preferred. 

One approach is to follow the filter [l ,  eiwO/(l + E)] by the time-domain, 
complex conjugate filter [I, e -  '""/(l + E)]. The composite time-domain operator is 
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FIGURE 2-15 
Spectrum associated 
at Z ,  = (1 + E) e i w O .  

with a single pole 

now [I,  (2 cos coO)/(l + E), 1 / ( 1  + E ) ~ ]  which is real. [Note that the complex 
conjugate in the frequency domain is B ( l / Z )  but in the time domain it is B(Z)  = 

6 ,  + &,Z + . . -3. The composite filter may be denoted by B(z)B(z). The spectrum 
of this filter is [~(z)B(i~z)][B(z)~(i/z)]. One may quickly verify that the spectrum 
of B(Z)  is like that of B(Z) ,  but the peak is at -ao instead of +coo.  Thus, the 
composite spectrum is the product of Fig. 2-15 with itself reversed along the fre- 
quency axis. This is shown in Fig. 2-16. 

EXERCISES 

1 A simple feedback operation is y, = (1 - ~ ) y , - ~  + X, . This operation is called leaky 
integration. Give a closed form expression for the output yr if X I  is an impulse. What 
is the decay time 7 of your solution (the time it takes for y, to drop to  e-'yo)? For 
small E, say = 0.1, .001, or 0.0001, what is T ? 

2 How far from the unit circle are the poles of 1/(1 - .I Z $  .9 Z Z ) ?  What is the decay 
time of the filter and its resonant frequency? 

3 Find a three-term real feedback filter to pass 59-61 Hz on data which are sampled at 
500 pointslsec. Where are the poles? What is the decay time of the filter? 

2-6 ALL-PASS FILTERS 

In this section we consider filters with constant unit spectra, that is, B ( Z ) B ( I I Z )  = 1 .  
In other words, in the frequency domain B(Z)  takes the form ei4(") where 4 is real 
and is called the phase shift. Clearly BB = 1 for all real 4. It  is an easy matter to  
construct a filter with any desired phase shift; one merely Fourier transforms 
ei4(") into the time domain. If 4(w) is arbitrary, the resulting time function is 
likely to  be two-sided. Since we are interested in physical processes which are 
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1 
Spectrum 

FIGURE 2-16 
Spectrum of a two-pole filter where one pole is like Fig. 2-15 and the other is at the 
conjugate position. 

causal, we may wonder what class of functions 4(o) corresponds to one-sided time 
functions. The easiest way to proceed is to begin with a simple case of a single- 
pole, single-zero all-pass filter. Then more elaborate all-pass filters can be made up 
by cascading these simple filters. Consider the filter 

Note that this is a simple case of functions of the form Z N A ( 1 / Z ) / ~ ( Z ) ,  where A ( Z )  
is a polynomial of degree N or less. Now observe that the spectrum of the filter p ,  
is indeed a frequency-independent constant. The spectrum is 

Multiply top and bottom on the left by Z .  We now have 



FIGURE 2-17 
The pole of the all-pass filter lies outside 
the unit circle and the zero is inside. 
They lie on the same radius line. 

It is easy to show that P(l/Z)P(Z) = 1 for the general form P(Z) = zNA(I/Z)/ 
A(Z). If Z, is chosen outside the unit circle, then the denominator of (2-6-1) can be 
expanded in positive powers of Z and the expansion is convergent on the unit 
circle. This means that causality is equivalent to Z, outside the unit circle. Setting 
the numerator of P(Z) equal to zero, we discover that the zero Z = 1/2, is then 
inside the unit circle. The situation is depicted in Fig. 2-17. To see that the pole and 
zero are on the same radius line, express Z0 in polar form r ,  e i 4 ~ .  

From Sec. 2-2 (on minimum phase) we see that the numerator of P is not 
minimum phase and its phase is augmented by 2n as w goes from 0 to 2n. Thus the 
average group delay d4/do is positive. Not only is the average positive but, in fact, 
the group delay turns out to be positive at every frequency. To see this, first note 
that 

The phase of the all-pass filter (or any complex number) may be written as 

Since I PI = 1 the real part of the log vanishes; and so, for the all-pass filter (only) 
we may specialize (2-6-5) to 
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Using (2-6-4) the group delay is now found to  be 

The numerator of (2-6-7) is a positive real number (since I Z, I > l), and the de- 
nominator is of the form A(l/Z)A(Z), which is a spectrum and also positive. Thus 
we have shown that the group delay of this causal all-pass filter is always positive. 

Now if we take a filter and follow it with an all-pass filter, the phases add and 
the group delay of the composite filter must necessarily be greater than the group 
delay of the original filter. By the same reasoning the minimum-phase filter must 
have less group delay than any other filter with the same spectrum. 

In summary, a single-pole, single-zero all-pass filter passes all frequency 
components with constant gain and a phase shift which may be adjusted by the 
placement of a pole. Taking Z, near the unit circle causes most of the phase shift 
to be concentrated near the frequency where the pole is located. Taking the pole 
further away causes the delay to be spread over more frequencies. Complicated 
phase shifts or group delays may be built up by cascading several single-pole filters. 

EXERCISES 

1 An example of an all-pass filter is the time function p, = (3, - 2 ,  -8, - & - .). Calcu- 
late a few lags of its autocorrelation by summing some infinite series. 

2 Sketch the amplitude, phase, and group delay of the all-pass filter ( 1  - ZoZ)/ (Zo - Z )  
where Zo = ( 1  + &)eiWo and E is small. Indicate important parameters on the curve. 

3 Show that the coefficients of an all-pass, phase-shifting filter made by cascading 
(1 - Zo Z) / (Zo - 2) with ( 1  - Zo Z) / (Zo - Z )  are real. 

4 A continuous time function is the impulse response of a continuous-time, all-pass 
filter. Describe the function in both time domain and frequency domain. Interchange 
the words time and frequency in your description of the function. What is a physical 
example of such a function? What happens to the statement: "The group delay of an 
all-pass filter is positive."? 

5 A graph of the group delay ~ ~ ( 0 )  in equation (2-6-7) shows T ,  to be positive for all w .  
What is the area under T ,  in the range 0 < w < 27r. ( H I N T :  This is a trick question you 
can solve in your head.) 

2-7 NOTCH FILTER AND POLE ON PEDESTAL 

In some applications it is desired to reject a very narrow frequency band leaving 
the rest of the spectrum little changed. The most common example is 60-Hz noise 
from power lines. Such a filter can easily be made with a slight variation on the 
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Narrowband All-pass Notch Constant Pole on 
pedestal 

FIGURE 2-18 
Pole and zero locations for some simple filters. Circles are unit circles in the 
Z plane. Poles are marked by X and zeros by 0. 

all-pass filter. In the all-pass filter the pole and zero have an equal (logarithmic) 
relative distance from the unit circle. All we need to do is to put the zero closer to 
the circle. In fact, there is no reason why we should not put the zero right on the 
circle. Then the frequency at  which the zero is located is exactly canceled from the 
spectrum of input data. If the undesired frequency need not be completely rejected, 
then the zero can be left just inside or outside the circle. As the zero is moved 
farther away from the circle, the notch becomes less deep until finally the zero is 
farther from the circle than the pole and the notch has become a hump. The result- 
ing filter which will be called pole on pedestal is in many respects like the narrowband 
filter discussed earlier. Some of these filters are illustrated in Figs. 2-18 and 2-19. 
The difference between the pole-on-pedestal and the narrowband filters is in the 
asymptotic behavior away from a,. The former is flat, while the latter continues to 
decay with increasing I a - ao, I .  This makes the pole on pedestal more convenient 
for creating complicated filter shapes by cascades of single-pole filters. 

Narrowband filters and sharp cutoff filters should be used with caution. 
An ever-present penalty for such filters is that they do not decay rapidly in time. 
Although this may not present problems in some applications, it will do so in 
others. Obviously, if the data collection duration is shorter or comparable to the 
impulse response of the narrowband filter, then the transient effects of starting up 
the experiment will not have time to die out. Likewise, the notch should not be 
too narrow in a 60-Hz rejection filter. Even a bandpass filter (easier to implement 
with fast Fourier transform than with a few poles) has a certain decay rate in the 
time domain which may be too slow for some experiments. In radar and in reflection 
seismology the importance of a signal is not related to its strength. Late-arriving 
echoes may be very weak, but they contain information not found in earlier echoes. 
If too sharp a frequency characteristic is used, then filter resonance from early 
strong arrivals may not have decayed sufficiently by the time that the weak late 
echoes arrive. 

EXERCISES 

I Consider a symmetric (nonrealizable) filter which passes all frequencies less than 
coo with unit gain. Frequencies above oo are completely attenuated. What is the rate 
of decay of amplitude with time for this filter? 
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t Spectrum 

FIGURE 2-19 
Amplitude vs. frequency for narrowband filter (NB) and pole-on-pedestal filter 
(PP). Each has one pole at Zo = 1.2 eix13. A second pole at Zo = 1.2 e-'"I3 

enables the filters to be real in the time domain. 

2 Waves spreading from a point source decay in energy as the area on a sphere. The 
amplitude decays as the square root of the energy. This implies a certain decay in 
time. The time-decay rate is the same if the waves reflect from planar interfaces. 
To what power of time t do the signal amplitudes decay? For waves backscattered to 
the source from point reflectors, energy decays as distance to the minus fourth power. 
What is the associated decay with time? 

3 Discuss the use of the filter of Exercise 1 on the data of Exercise 2. 
4 Design a single-pole, single-zero notch filter to reject 59 to 61 Hz on data which are 

sampled at 500 points per second. 

2-8 THE BILINEAR TRANSFORM 
Z transforms and Fourier transforms are related by the relations Z = ei" and 
io = In Z. A problem with these relations is that simple ratios of polynomials in Z 
do not translate to ratios of polynomials in o and vice versa. The approximation 
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is easily solved for Z as 

These approximations are often useful. They are truncations of the exact power 
series expansions 

and 

For a Z transform B(Z) to be minimum phase, any root Z, of 0 = B(Z,) 
should be outside the unit circle. Since 2, = exp{i[Re (w,) + i Im (o,)]) and 
IZO I = e-'m(oo), it means that for minimum phase Im (a,) should be negative. 
(In other words, coo is in the lower half-plane.) Thus it may be said that Z = ei" 
maps the exterior of the unit circle to the lower half-plane. By inspection of 
Figs. 2-20 and 2-21, it is found that the bilinear approximation (2-8-1) or (2-8-2) 
also maps the exterior of the unit circle into the lower half-plane. 

Thus, although the bilinear approximation is an approximation, it turns out 
to exactly preserve the minimum-phase property. This is very fortunate because if a 
stable differential equation is converted to a difference equation via (2-8-l), the 
resulting difference equation will be stable. (Many cases may be found where the 
approximation of a time derivative by multiplication with 1 - Z would convert a 
stable differential equation into an unstable difference equation.) 

A handy way to remember (2-8-1) is that -iw corresponds to time differen- 
tiation of a Fourier transform and (1 - Z) is the first differencing operator. The 
(1 + 2) in the denominator gets things "centered" at Z1I2. 

To see that the bilinear approximation is a low-frequency approximation, 
multiply top and bottom of (2-8-1) by Z-'I2 

= - 2i sin u/2 
cos w/2 

G = 2 tan 012 (2-8-5) 

Equation (2-8-5) implicitly refers to a sampling rate of one sample per second. 
Taking an arbitrary sampling rate At, the approximation (2-8-5) becomes 

o At z 2 tan u At12 (2-8-6) 

This approximation is plotted in Fig. 2-22. Clearly, the error can be made as small 
as one wishes merely by sampling often enough; that is, taking At small enough. 



D -i 27i-n - 7~12 -2 
FIGURE 2-20 E 4 2 m  + .693i iZ 
Some typical points in the Z-plane, the F 2 2 m  - .693i - i$ 
o-plane, and the &-plane. 

% plane w plane 

w plane 

FIGURE 2-21 
The points of Fig. 2-20 displayed in the Z plane, the w plane, and the &-plane. 
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FIGURE 2-22 
The accuracy of the bilinear trans- 
formation approximation. 

From Fig. 2-22 we see that the error will be only a few percent if we choose At 
small enough so that omax At 5 1 .  Readers familiar with the folding theorem will 
recall that it gives the less severe restraint o,,,At < n. Clearly, the folding theorem 
is too generous for applications involving the bilinear transform. 

Now, by way of example, let us take up the case of a pole 11-io at  zero 
frequency. This is integration. For reasons which will presently be clear, we will 
consider the slightly different pole 

where E is small. Inserting the bilinear transform, we get 

By inspection of (2-8-8) we see that the time-domain function is real, and as E goes 
to zero it takes the form (.5, 1, 1, 1, . . .). (Taking E positive forces the step to go out 
into positive time, whereas E negative would cause the step to rise at negative time.) 
The properties of this function are summarized in Fig. 2-23. It is curious to note 
that if time domain and frequency domain are switched around, we have the quadra- 
ture filter described in Fig. 1-17. 



FIGURE 2-23 
Properties of the integration operator. 

EXERCISE 

I In the solution to diffusion problems, the factor F(w) = I/(-iw)"* often arises as a 
multiplier. To see the equivalent convolution operation, find a causal, sampled-time 
representationI; of F ( o )  by identification of powers of Z in 

Solve numerically for fo through f7. 



3 
SPECTRAL FACTORIZATION 

As we will see, there is an infinite number of time functions with any given spectrum. 
Spectral factorization is a method of finding the one time function which is also 
minimum phase. The minimum-phase function has many uses. It, and it alone, 
may be used for feedback filtering. It will arise frequently in wave propagation 
problems of later chapters. It arises in the theory of prediction and regulation for 
the given spectrum. We will further see that it has its energy squeezed up as close 
as possible to t = 0. It determines the minimum amount of dispersion in viscous 
wave propagation which is implied by causality. It finds application in two-dimen- 
sional potential theory where a vector field magnitude is observed and the com- 
ponents are to be inferred. 

This chapter contains four computationally distinct methods of computing 
the minimum-phase wavelet from a given spectrum. Being distinct, they offer 
separate insights into the meaning of spectral factorization and minimum phase. 

3-1 ROOT METHOD 

The time function (2, 1) has the same spectrum as the time function (1, 2). The 
autocorrelation is (2, 5, 2). We may utilize this observation to explore the multi- 
plicity of all time functions with the same autocorrelation and spectrum. It would 
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seem that the time reverse of any function would have the same autocorrelation 
as the function. Actually, certain applications will involve complex time series; 
therefore we should make the more precise statement that any wavelet and its 
complex-conjugate time-reverse share the same autocorrelation and spectrum. Let 
us verify this for simple two-point time functions. The spectrum of (b,, b,) is 

The conjugate-reversed time function (ti,, 6,) with Z transform Br(Z) = 6, + 6,Z 
has a spectrum 

We see that the spectrum (3-1-1) is indeed identical to (3-1-2). Now we wish to 
extend the idea to time functions with three and more points. Full generality may 
be observed for three-point time functions, say B(Z) = b, + b,Z + b2z2.  First, 
we call upon the fundamental theorem of algebra (which states that a polynomial 
of degree n has exactly n roots) to write B(Z) in factored form. 

Its spectrum is 

Now, what can we do to change the wavelet (3-1-3) which will leave its 
spectrum (3- 1-4) unchanged ? Clearly, b, may be multiplied by any complex num- 
ber of unit magnitude. What is left of (3-1-4) can be broken up into a product of 
factors of form (Zi - l/Z)(Zi - Z). But such a factor is just like (3-1-1). The time 
function of (Zi - Z) is (Zi , - l), and its complex-conjugate time-reverse is (- 1, Zi). 
Thus, any factor (Zi - Z) in (3-1-3) may be replaced by a factor ( - 1 + ZiZ). In a 
generalization of (3-1-3) there could be N factors [(Zi - Z), i = 1, 2, . . . , N)]. Any 
combination of them could be reversed. Hence there are 2N different wavelets which 
may be formed by reversals, and all of the wavelets have the same spectrum. Let us 
look off the unit circle in the complex plane. The factor (Zi - Z) means that Zi is 
a root of both B(Z) and R(Z). If we replace (Zi - Z) by (- 1 + ZiZ) in B(Z), we 
have removed a root at Zi from B(Z) and replaced it by another at Z = l /Zi.  The 
roots of R(Z) have not changed a bit because there were originally roots at both 
Zi and l/Zi and the reversal has merely switched them around. Summarizing the 
situation in the complex plane, B(Z) has roots Zi which occur anywhere, R(Z) must 



FIGURE 3-1 
Roots of B(l /Z)  B(Z). 

have all the roots Zi and, in addition, the roots l / z i .  Replacing some particular 
root Zi by l/Zi changes B(Z) but not R(Z). The operation of replacing a root at 
Zi by one at l/Zi may be written as 

The multipyling factor is none other than the all-pass filter considered in an earlier 
chapter. With that in mind, it is obvious that B'(Z) has the same spectrum as B(Z). 
In fact, there is really no reason for Zi to be a root of B(Z). If Zi is a root of B(Z), 
then B'(Z) will be a polynomial; otherwise it will be an infinite series. 

Now let us discuss the calculation of B(Z) from a given R(Z). First, the roots 
of R(Z) are by definition the solutions to R(Z) = 0. If we multiply R(Z) by ZN 
(where R(Z) has been given up to degree N), then Z~R(Z)  is a polynomial and the 
solutions Zi to Z N ~ ( Z )  = 0 will be the same as the solutions of R(Z) = 0. Finding 
all roots of a polynomial is a standard though difficult task. Assuming this to have 
been done we may then check to see if the roots come in the pairs Zi and l /Zi .  
If they do not, then R(Z) was not really a spectrum. If they do, then for every 
zero inside the unit circle, we must have one outside. Refer to Fig. 3-1. Thus, 
if we decide to make B(Z) be a minimum-phase wavelet with the spectrum R(Z), 
we collect all of the roots outside the unit circle. Then we create B(Z) with 

This then summarizes the calculation of a minimum-phase wavelet from a 
given spectrum. When N is large, it is computationally very awkward compared 
to methods yet to be discussed. The value of the root method is that it shows 
certain basic principles. 

I Every spectrum has a minimum-phase wavelet which is unique within a 
complex scale factor of unit magnitude. 
2 There are infinitely many time functions with any given spectrum. 
3 Not all functions are possible autocorrelation functions. 



The root method of spectral factorization was apparently developed by 
economists in the 1920s and 1930s. A number of early references may be found in 
Wold's book, Stationary Time Series [Ref. 101. 

EXERCISES 

I How can you find the scale factor bN in (3-1-6)? 
2 Compute the autocorrelation of each of the four wavelets (4,0, -I), (2, 3, -2), 

(-2, 39% (LO, -4). 
3 A power spectrum is observed to fit the form P(w) = 38 + 10 cos u - 12 cos 2w. 

What are some wavelets with this spectrum? Which is minimum phase? [HINT: 

cos 2w = 2 cos2 w - 1 ; 2 cos o = Z + 1/Z; use quadratic formula.] 
4 Show that if a wavelet b, = (bo , bl , . . . , 6,) is real, the roots of the spectrum R come in 

the quadruplets Zo , l/Zo, z o ,  and l/Zo. Look into the case of roots exactly on the 
unit circle and on the real axis. What is the minimum multiplicity of such roots? 

3-2 ROBINSON'S ENERGY DELAY THEOREM [Ref. 111 

We will now show that a minimum-phase wavelet has less energy delay than any 
other one-sided wavelet with the same spectrum. More precisely, we will show 
that the energy summed from zero to  any time t for the minimum-phase wavelet is 
greater than or equal to  that of any other wavelet with the same spectrum. Refer 
t o  Fig. 3-2. 

We will compare two wavelets P, ,  and Pout which are identical except for 
one zero, which is outside the unit circled for Pout and inside for P i , .  We may 
write this as 

POU,(Z) = (b  + sZ)P(Z)  

Pi,(Z) = ( s  + bZ)P(Z) 

where b is bigger than s and P is arbitrary but of degree n. Next we tabulate the terms 
in question. 

n Time 

FIGURE 3-2 
Percent of total energy in a filter between time 0 and time t. 
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The difference, which is given in the right-hand column, is clearly always positive. 
To prove that the miminum-phase wavelet delays energy the least, the pre- 

ceding argument is repeated with each of the roots until they are all outside the 
unit circle. 

EXERCISE 

I Do the foregoing minimum-energy-delay proof for complex-valued b, s, and P. 
[CAUTION: Does Pi, = (s + bZ)P or Pin = (S + bZ)P?] 

3-3 THE TOEPLITZ METHOD 

The Toeplitz method of spectral factorization is based on special properties of 
Toeplitz matrices [Ref. 121. In this chapter we introduce the Toeplitz matrix to 
perform spectral factorization. In later chapters we will refer back several times 
to the algebra described here. When one desires to predict a time series, one can 
do this with a so-called prediction filter. This filter is found as the solution to 
Toeplitz simultaneous equations. Norman Levinson, in his explanatory appendix 
of Norbert Wiener's Time Series, first introduced the Toeplitz matrix to engineers; 
however, it had been widely known and used previously in the field of econometrics. 
It is only natural that it should appear first in economics because there the data 
are observed at discrete time points, whereas in engineering the idea of discretized 
time was rather artificial until the advent of digital computers. The need for pre- 
diction in economics is obvious. In seismology, it is not the prediction itself but 
the error in prediction which is of interest. Reflection seismograms are used in 
petroleum exploration. Ideally, the situation is like radar where the delay time is 
in direct proportion to physical distance. This is the case for the so-called primary 
reflections. A serious practical complication arises in shallow seas where large 
acoustic waves bounce back and forth between the sea surface and the sea floor. 
These are called multiple reflections. A mechanism for separation of the primary 
waves from the multiple reflections is provided by prediction. A multiple reflection 
is predictable from earlier echoes, but a primary reflection is not predictable from 
earlier echoes. Thus, the useful information is carried in the part of the seismo- 
gram which is not predictable. An oil company computer devoted to interpreting 
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seismic exploration data typically solves about 100,000 sets of Toeplitz simultaneous 
equations in a day. 

Another important application of the algebra associated with Toeplitz 
matrices is in high-resolution spectral analysis. This is where a power spectrum is 
to be estimated from a sample of data which is short (in time or space). The con- 
ventional statistical and engineering knowledge in this subject is based on assump- 
tions which are frequently inappropriate in geophysics. The situation was fully 
recognized by John P. Burg who utilized some of the special properties of Toeplitz 
matrices to  develop his maximum-entropy spectral estimation procedure described 
in a later chapter. 

Another place where Toeplitz matrices play a key role is in the mathematical 
physics which describes layered materials. Geophysicists often model the earth by 
a stack of plane layers or by concentric spherical shells where each shell or layer 
is homogeneous. Surprisingly enough, many mathematical physics books do not 
mention Toeplitz matrices. This is because they are preoccupied with forward 
problems; that is, they wish to calculate the waves (or potentials) observed in a 
known configuration of materials. In geophysics, we are interested in both forward 
problems and in inverse problems where we observe waves on the surface of the 
earth and we wish to deduce material configurations inside the earth. A later 
chapter contains a description of how Toeplitz matrices play a central role in such 
inverse problems. 

We start with a time function x, which may or may not be minimum phase. 
Its spectrum is computed by R(Z) = ~ ( ~ / z ) x ( z ) .  As we saw in the preceding sec- 
tions, given R(Z) alone there is no way of knowing whether it was computed from 
a minimum-phase function or a nonminimum-phase function. We may suppose 
that there exists a minimum phase B(Z) of the given spectrum, that is, R(Z) = 

B(l/Z) B(Z). Since B(Z) is by hypothesis minimum phase, it has an inverse 
A(Z) = l/B(Z). We can solve for the inverse A(Z) in the following way: 

To solve for A(Z), we identify coefficients of powers of 2. For the case where, for 
example, A(Z) is the quadratic a, + a ,Z  + a2Z2 ,  the coefficient of Z0 in (3-3-2) 
is 

The coefficient of Z' is 

and the coefficient of z2 is 
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Bringing these together we have the simultaneous equations 

It should be clear how to generalize this to a set of simultaneous equations of 
arbitrary size. The main diagonal of the matrix contains r, in every position. The 
diagonal just below the main one contains r, everywhere. Likewise, the whole 
matrix is filled. Such a matrix is called a Toeplitz matrix. Let us define a; = a,/a,. 
Recall by the polynomial division algorithm that 6 ,  = llii,. Define a positive 
number 2; = lla, G o .  Now, dividing the vector on each side of (3-3-4) by a,, we 
get the most popular form of the equations 

This gives three equations for the three unknowns a;, a;, and v. To put (3-3-5) 
in a form where standard simultaneous equations programs could be used one 
would divide the vectors on both sides by v. After solving the equations, we get 
a, by noting that it has magnitude I / &  and its phase is arbitrary, as with the root 
method of spectral factorization. 

At this point, a pessimist might interject that the polynomial A(Z) = a,+ 
a,Z + a , z 2  determined from solving the set of simultaneous equations might 
not turn out to be minimum phase, so that we could not necessarily compute B(Z) 
by B(Z)  = l / A ( Z ) .  The pessimist might argue that the difficulty would be especially 
likely to occur if the size of the set (3-3-5) was not taken to be large enough. 
Actually experimentalists have known for a long time that the pessimists were 
wrong. A proof can now be performed rather easily, along with a description of 
a computer algorithm which may be used to solve (3-3-5). 

The standard computer algorithms for solving simultaneous equations require 
time proportional to n3  and computer memory proportional to n2. The Levinson 
computer algorithm [Ref. 131 for Toeplitz matrices requires time proportional to 
n2 and memory proportional to n. First notice that the Toeplitz matrix contains 
many identical elements. Levinson utilized this special Toeplitz symmetry to 
develop his fast method. 

The method proceeds by the approach called recursion. That is, given the 
solution to the k x k set of equations, we show how to calculate the solution to the 
(k + 1) x (k + 1) set. One must first get the solution for k = 1 ; then one repeatedly 
(recursively) applies a set of formulas increasing k by one at each stage. We will 
show how the recursion works for real-time functions (r, = r - , )  going from the 
3 x 3 set of equations to the 4 x 4 set, and leave it to the reader to work out the 
general case. 

Given the 3 x 3 simultaneous equations and their solution ai 



then the following construction defines a quantity e given r3 (or r3 given e) 

The first three rows in (3-3-7) are the same as (3-3-6); the last row is the new defi- 
nition of e. The Levinson recursion shows how to calculate the solution a' to the 
4 x 4 simultaneous equations which is like (3-3-6) but larger in size. 

The important trick is that from (3-3-7) one can write a " reversed" system 
of equations. (If you have trouble with the matrix manipulation, merely write out 
(3-3-8) as simultaneous equations, then reverse the order of the unknowns, and 
then reverse the order of the equations.) 

The Levinson recursion consists of subtracting a yet unknown portion c ,  of (3-3-9) 
from (3-3-7) so as to get the result (3-3-8). That is 

To make the right-hand side of (3-3-10) look like the right-hand side of (3-3-8), we 
have to get the bottom element to vanish, so we must choose c3 = e/v. This 
implies that v' = u - c3 e = v - e2/zj = v[l - ( e / ~ ) ~ ] .  Thus, the solution to the 
4 x 4 system is derived from the 3 x 3 by 

2 

We have shown how to calculate the solution of the 4 x 4 Toeplitz equations 
from the solution of the 3 x 3 Toeplitz equations. The Levinson recursion consists 
of doing this type of step, starting from 1 x 1 and working up to n x n. 

Let us reexamine the calculation to see why A(Z) turns out to be minimum 
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COMPLEX R, A, C , E , BOT , CONJG 
C(l)=-1. ; R(l)=l. ; A(l)=l. ; V(l)=l. 

200 DO 220 J=2,N 
A(J)=O. 
E=O. 
DO 210 I=2,J 

210 E=E+R(I) *A(J-I+1) 
C (J)=E/V (J-1) 

FIGURE 3-3 V(J)=V(J-1)-E*CONJG(C (J) ) 
A computer program to do the Levinson JH= (J+l) / 2  

DO 220 I=l,JH recursion. It is assumed that the input rk BOT=A(J-1+1)-c (J) *CONJG (A(I) ) 
have been normalized by division by ro . A(I)=A(I)-C(J)*CONJG(A(J-1+1)) 
The complex arithmetic is optional. 220 A(J-I+~)=BoT 

phase. First, we notice that u = l/Z, a, and u' = lliida6 are always positive. Then 
from (3-3-13) we see that - 1 < e/u < + 1. (The fact that c = e/u is bounded by 
unity will later be shown to correspond to the fact that reflection coefficients for 
waves are so bounded.) Next, (3-3-12) may be written in polynomial form as 

A ' ( Z ) = A ( Z ) - ( ~ / V ) Z ~ A ( ~ / Z )  (3-3-14) 

We know that z3 has unit magnitude on the unit circle. Likewise (for real time 
series), the spectrum of A(Z) equals that of A(l/Z). Thus (by the theorem of adding 
garbage to a minimum-phase wavelet) if A(Z) is minimum phase, then A1(Z) will 
also be minimum phase. In summary, the following three statements are equivalent: 

1 R(Z) is of the form X 
2 Ickl < 1. 
3 A(Z) is minimum phase. 

If any one of the above three is false, then they are all false. A program for the 
calculation of a, and c, from r, is given in Fig. 3-3. In Chap. 8, on wave propagation 
in layers, programs are given to compute r, from a, or c,. 

EXERCISES 

I The top row of a 4 x 4 Toeplitz set of simultaneous equations like (3-3-8) is (1, a, ;Ik, a). 
What is the solution ak? 

2 How must the Levinson recursion be altered if time functions are complex? Specific- 
ally, where do  complex conjugates occur in (3-3-1 I), (3-3-12), and (3-3-13)? 

3 Let A,(Z) denote a polynomial whose coefficients are the solution to  an  m x m set of 
Toeplitz equations. Show that if Bk(Z) = Z k A k ( Z - ' )  then 

2  n  

- 2 j R(Z)B.(Z)Z -" dm n 5 m vn a n m  - 
27l 0 

which means that the polynomial Bm(Z) is orthogonal to polynomial Z n  over the unit 
circle under the positive weighting function R. Utilizing this result, state why B, is 
orthogonal to B, ,  that is, 

1 2 n  

V .  6.. = - I R ( z l B . ( z ) ~ .  (i) dw 
2.rr 0 

(HINT: First consider n I m, then all n.) 



Toeplitz matrices are found in the mathematical literature under the topic of poly- 
nomials orthogonal on the unit circle. The author especially recommends Atkinson's 
book (Ref. 14). 

3-4 WHITTLE'S EXP-LOG METHOD [Ref. 151 

In this method of spectral factorization we substitute power series into other power 
series. Thus, like the root method, it is good for learning but not good for comput- 
ing. We start with some given autocorrelation r ,  where 

If I RI > 2 on the unit circle then a scale factor should be divided out. Insert this 
power series into the power series for logarithms. 

U ( Z )  = In R(Z) 

Of course, in practice this would be a lot of effort, but it could be done in a syste- 
matic fashion with a computer program. Now define U,' by dropping negative 
powers of Z from U ( Z )  

Insert this into the power series for the exponential 

The desired minimum-phase wavelet is B(Z);  its spectrum is R(Z).  To see why 
this is so, consider the following identities. 

- 1 uo 
= exp + z u,zk + + x ukz*)  

2 - 0 0  + 1 

00 

= exp (5 + 2 ukzk) exp (; + 1 U k ~ k )  
2 -00  1 

= exp [ u + (;)I exp I u + (z)] 

















RESOLUTION 

In locating an earthquake or a petroleum drilling site there will be an uncertainty 
in location, say (Ax, Ay, Az) caused by measurement errors and the physical size 
of the target. In measuring a voltage there will be a measuring accuracy Au. 
The frequency of useful seismic waves will have a bandwidth Am. The time at 
which an earthquake occurs will have an uncertainty given by the duration of 
shaking At. A telescope of diameter Ad has at best a resolving power measured 
by a certain angular range AO. It is often desirable to make measurements in such 
a way as to reduce the quantities Ax, Ay, Az, Av, Am, At, Ad, and A0 to values as 
small as possible. These measures of resolution (which are called variances, 
tolerances, uncertainties, bandwidths, durations, spreads, spans, etc.) sometimes 
intereact with one another in such a way that any experimental modification which 
reduces one must necessarily increase another or some combination of the others. 
The purpose of this chapter is to discuss some of the commonly occurring situa- 
tions where such conflicting interactions occur. 

In this chapter we use At to denote the time duration of a signal. We use z 
to denote the amount of time which passes between sample points. In other 
chapters, At is synonymous with z, the sample interval. 
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4-1 TIME-FREQUENCY RESOLUTION 

The famous " uncertainty principle " of quantum mechanics resulted from observ- 
ations that subatomic particles behave like waves with wave frequency proportional 
to particle momentum. The classical laws of mechanics enable prediction of the 
future of a mechanical system by extrapolation from presently known position 
and momentum. But because of the wave nature of matter with momentum 
proportional to frequency, such prediction requires simultaneous knowledge of 
both the location and the frequency of a wave. A sinusoidal wave has a perfectly 
clearly determined frequency, but it is spread over the infinitely long time axis. 
At the other extreme is a delta function, which is nicely compressed to a point on 
the time axis but contains a mixture of all frequencies. A mathematical analysis 
of the uncertainty principle is thus an analysis relating functions to their Fourier 
transforms. 

Such an analysis begins by definitions of time duration and spectral band- 
width. The time duration of a damped exponential function is infinite if by dura- 
tion you mean the span of nonzero function values. However, for nearly all practi- 
cal purposes the time span is chosen as the time required for the amplitude to 
decay to e-' of its original value. For many functions the span is defined by the 
span between points on the time or frequency axis where the curve (or its envelope) 
drop to  half of the maximum value. The main idea is that the time span At or the 
frequency span Aw should be able to include most of the total energy but need not 
contain all of it. The precise definition of At and Aw is somewhat arbitrary and 
may be chosen to simplify analysis. The general statement is that for any function 
the time duration At and the spectral bandwidth A o  are related by 

Although it is easy to verify (4-1-1) in many special cases, it is not very easy to 
deduce (4-1-1) as a general principle. This has, however, been done by D. Gabor 
[Ref. 171. He chose to define At and A o  by second moments. 

A similar and perhaps more basic concept than the product of time and 
frequency spreads is the relationship between spectral bandwidth and rise time of 
a system response function. The rise time At of a system response is also defined 
somewhat arbitrarily, often as the time span between the time of excitation and 
the time at which the system response is half its ultimate value. In principle, a 
broad frequency response can result from a rapid decay time as well as from a 
rapid rise time. Tightness in the inequality (4-1-1) may be associated with situations 
in which a certain rise time is quicky followed by an equal decay time. Slackness 
in the inequality (4-1-1) may be associated with increasing inequality between rise 
time and decay time. Slackness could also result from other combinations of rises 
and falls such as random combinations. Many systems respond very rapidly 
compared to the rate at which they subsequently decay. Focusing our attention 
on such systems, we can now seek to derive the inequality (4-1-1) applied to rise 
time and bandwidth. The first step is to choose a definition for rise time. The 
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choice is determined not only for clarity and usefulness but also by the need to 
ensure tractability of the subsequent analysis. I have found a reasonable definition 
of rise time to be 

where b(t) is the response function under consideration. The numerator is just a 
normalizing factor. The denominator says we have defined At by the first negative 
moment. For example, if b(t) is a step function, then the denominator integral 
diverges, giving the desired At = 0 rise time. If b(t)2 grows linearly from zero to to 
and then vanishes, the rise time At is to/2, again a reasonable definition. 

Although the Z transform method is a great aid in studying situations where 
divergence (as llt) plays a key role, it does have the disadvantage that it destroys 
the formal identity between the time domain and the frequency domain. Presum- 
ably this disadvantage is not fundamental since we can always go to a limiting 
process in which the discretized time domain tends to a continuum. In order to 
utilize the analytic simplicity of the Z transform we now consider the dual to the 
rise-time problem. Instead of a time function whose square vanishes identically 
at negative time we now consider a spectrum B(I/z)B(z) which vanishes at negative 
frequencies. We measure how fast this spectrum can rise after co = 0. We will find 
this to be related to the time duration At of the complex time function b,. More 
precisely, we will now define the lowest significant frequency component o = A o  
in the spectrum analogously to (4-1-2) to be 

Without loss of generality we can assume that the spectrum has been normalized 
so that the numerator integral is unity. In other words, the zero lag of the auto- 
correlation of b, is + 1. Then 

Now we recall the bilinear transform which gives us various Z transform expres- 
siens for (- io)-'. The one we ordinarily use is the integral (. . . 0,0,0.5, 1. , 1 ., . . .). 
We could also use -(... 1, 1, 1,0.5, 0,0,O. ..). The pole right on the unit circle 
at Z = 1 causes some nonuniqueness. Because l / io is an imaginary odd frequency 
function we will take the desired expansion to be the odd function of time given by 



Converting (4-1-4) to an integral on the unit circle in Z transform notation we have 

But since this integral selects the coefficient of Z0 of its argument we have 

where r, is the autocorrelation functioll of b,. This may be further expressed as 

The sum in (4-1-8) is like an integral representing area under the lrrl function. 
Imagine the 1 r, 1 function replaced by a rectangle function of equal area. This 
would define a Atauto for the 1 r, 1 function. Any autocorrelation function satisfies 
Ir,l < r, and we have normalized r, = 1. Thus, we extend the inequality (4-1-8) 
by 

Finally, we must relate the duration of a time function At to the duration of its 
autocorrelation At,,,,. Generally speaking, it is easy to find a long time function 
which has short autocorrelation. Just take an arbitrary short time function and 
convolve it by a long and tortuous all-pass filter. The new function is long, but 
its autocorrelation is short. If a time function has n nonzero points, then its auto- 
correlation has only 2n - 1 nonzero points. It is obviously impossible to get a 
long autocorrelation function out of a short time function. It is not even fair to 
say that the autocorrelation is twice as long as the original time function because the 
autocorrelation must lie under some tapering function. To construct a time func- 
tion with as long an autocorrelation as possible, the best thing to do is to concen- 
trate the energy in two lumps, one at each end of the time function. Even from this 
extreme example, we see that it is not unreasonable to assert that 

At  2 At,",, (4-1-10) 
inserting into (4-1-9) we have the uncertainty relation 

At A 0  2 1 (4-1-1 1) 

The more usual form of the uncertainty principle uses the frequency variable f = 2 0  7 - 3 
and a different definition of At, namely time duration rather than rise time. It is ' 

tn 

At Af 2 1 (At is duration) (4-1-12) 

The choice of a 271 scaling factor to convert rise time to duration is indicative of 
the approximate nature of the inequalities. 



EXERCISES 

1 Consider B(Z) = [I - (Z/Zo)"]/(l  - Z/Zo)  in the limit Zo goes to the unit circle. Sketch 
the time function and its squared amplitude. Sketch the frequency function and its 
squared amplitude. Choose Af and At. 

2 A time series made up of two frequencies may be written as 

b, = A cos wlt  + B sin o l t  + C cos w z  t  + D sin wz  t 

Given ol, wz , b o ,  bl ,  bz , bg show how to calculate the amplitude and phase angles of 
the two sinusoidal components. 

2)  $ Consider the frequency function graphed below. 

FIGURE E 4-1-3 

Describe the time function in rough terms indicating the times corresponding to l / f i ,  
l / f z ,  and l / f3 .  Try to avoid algebraic calculation. Sketch an approximate result. 

PROBLEM FOR RESEARCH 

Can you find a method of defining Aw and At of one-sided wavelets in such a way 
that for minimum-phase wavelets only the uncertainty principle takes on the equality 
sign ? 

4-2 TIME-STATISTICAL RESOLUTION 

If you flipped a coin 100 times, it is possible that you would get exactly 50 " heads " 
and 50 "tails." More likely it would be something between 60-40 and 40-60. 
Typically, how much deviation from 50 would you expect to see? The average 
(mean) value should be 50, but some other value is almost always obtained from 
a random sample. The other value is called the sample mean. We would like to 
know how much difference to expect between the sample mean and the true mean. 
The average squared difference is called the variance of the sample mean. For a 
very large sample, the sample mean should be proportionately much closer to the 
true mean than for a smaller sample. This idea will lead to an uncertainty relation 
between the probable error in the estimated mean and the size of the sample. Let 
us be more precise. 
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The "true value" of the mean could be defined by flipping the coin n times 
and conceiving of n going to infinity. A more convenient definition of"  true value " 
is that the experiment could be conceived of as having been done separately under 
identical conditions by an infinite number of people (an ensemble). Such an arti- 
fice will enable us to define a time-variable mean for coins which change with time. 

The utility of the concept of an ensemble is often subjected to serious attack 
both from the point of view of the theoretical foundations of statistics and 
from the point of view of experimentalists applying the techniques of statistics. 
Nonetheless a great body of geophysical literature uses the artifice of assuming 
the existence of an unobservable ensemble. The advocates of using ensembles (the 
Gibbsians) have the advantage over their adversaries (the Bayesians) in that their 
mathematics is more tractable (and more explainable). So, let us begin! 

A conceptual average over the ensemble, called an expectation, is denoted 
by the symbol E. The index for summation over the ensemble is never shown 
explicitly; every random variable is presumed to  have one. Thus, the true mean 
at time t may be defined as 

If the mean does not vary with time, we may write 

m = E(x,) (all t )  (4-2-2) 

Likewise, we may be interested in a property of x, called its variance which 
is a measure of variability about the mean defined by 

The x, random numbers could be defined in such a way that a or m or both is 
either time-variable or constant. If both are constant, we have 

When manipulating algebraic expressions the symbol E behaves like a summation 
sign, namely 

Notice that the summation index is not given, since the sum is over the ensemble, 
not time. 

Now let x, be a time series made up from (identically distributed, independ- 
ently chosen) random numbers in such a way that m and a do not depend on time. 
Suppose we have a sample of n points of x, and are trying to determine the value of 
m. We could make an estimate rh of the mean m with the formula 



A somewhat more elaborate method of estimating the mean would be to take a 
weighted average. Let wt define a set of weights normalized so that 

z W ,  = 1 (4-2-7) 

With these weights the more elaborate estimate & of the mean is 

& = C W , X ,  (4-2-8) 

Actually (4-2-6) is just a special case of (4-2-8) where the weights are w,  = lln; 
t = l , 2  ,..., n. 

Our objective in this section is to determine how far the estimated mean & 
is likely to be from the true mean m for a sample of length n. One possible defini- 
tion of this excursion Am is 

(Am)2 = E[(& - m)'] (4-2-9) 

= ~ { [ ( x  wt x,) - m]') (4-2-10) 

Now utilize the fact that m = m 1 wt = w t m  

Now the expectation symbol E may be regarded as a summation sign and brought 
inside the sums on t and s. 

(Am)2 = 1 1 wt W ,  E[(xt - m)(x, - m)] (4-2- 14) 
t S 

By the randomness of xt and xs the expectation on the right, that is, the sum over 
the ensemble, gives zero unless s = t. If s = t, then the expectation is the variance 
defined by (4-2-4). Thus we have 

Now let us examine this final result for n weights each of size lln. For this case, 
we get 
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This is the most important property of random numbers which is not intuitively 
obvious. For a zero mean situation it may be expressed in words: " n  random 
numbers of unit magnitude add up to a magnitude of about the square root of n." 

When one is trying to estimate the mean of a random series which has a 
time-variable mean, one faces a basic dilemma. If one includes a lot of numbers in 
the sum to get Am small, then m may be changing while one is trying to measure it. 
In contrast, riz measured from a short sample of the series might deviate greatly 
from the true m (defined by an infinite sum over the ensemble at any point in time). 
This is the basic dilemma faced by a stockbroker when a client tells him, " Since 
the market fluctuates a lot I'd like you to sell my stock sometime when the price is 
above the mean selling price." 

If we imagine that a time series is sampled every z seconds and we let At = nz 
denote the length of the sample then (4-2-18) may be written as 

It is clearly desirable to have both Am and At as small as possible. If the original 
random numbers x, were correlated with one another, for example, if x, were 
an approximation to a continuous function, then the sum of the n numbers 
would not cancel to root n. This is expressed by the inequality 

The inequality (4-2-20) may be called an uncertainty relation between accuracy 
and time resolution. 

In considering other sets of weights one may take a definition of At which is 
more physically sensible than z times the number of weights. For example, if the 
weights w,  are given by a sampled gaussian function as shown in Fig. 4-1. then 
At could be taken as the separation of half-amplitude points, 1/e points, the time 
span which includes 95 percent of the area, or it could be given many other 
" sensible" interpretations. Given a little slop in the definition of Am and At, it is 
clear that the inequality of (4-2-20) is not to be strictly applied. 

Given a sample of a zero mean random time series x,, we may define another 
series y ,  by y ,  = xt2. The problem of estimating the variance a2 = p  of x,  is 
identical to the problem of estimating the mean m of y,. If the sample is short, we 
may expect an error Ap in our estimate of the variance. Thus, in a scientific paper 
one would like to write for the mean 

but since the variance a2 often is not known either, it is necessary to use the 
estimated 6, that is 
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FIGURE 4-1 
Binomial coefficients tend to the gaussian 
function. Plotted are the coefficients of 
Z' in ( .5  + .5Z)20. 

Of course (4-2-23) really is not right because we really should add something to 
indicate additional uncertainty due to error in 8. This estimated error would 
again have an error, ad infinitum. To really express the result properly, it is neces- 
sary to have a probability density function to calculate all the E(xn) which are 
required. The probability function can be either estimated from the data or chosen 
theoretically. In practice, for a reason given in a later section, the gaussian function 
often occurs. In the exercises it is shown that 

Since At = nz, by squaring we have 

The inequality applies if the random numbers x,  are not totally unpredictable 
random numbers. If x, is an approximation to a continuous function, then it is 
highly predictable and there will be a lot of slack in the inequality. 

Correlation is a concept similar to cosine. A cosine measures the angle 
between two vectors. It is given by the dot product of the two vectors divided by 
their magnitudes 
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Correlation is the same sort of thing, except x and y are scalar random variables, 
so instead of having a vector subscript their subscript is the implicit ensemble 
subscript. Correlation is defined 

In practice one never has an ensemble. There is a practical problem when the 
ensemble average is simulated by averaging over a sample. The problem arises 
with small samples and is most dramatically illustrated for a sample with only 
one element. Then the sample correlation is 

regardless of what value the random number x or the random number y should 
take. In fact, it turns out that the sample correlation 2 will always scatter away 
from zero. 

No doubt this accounts for many false " discoveries." The topic of bias and 
variance of coherency estimates is a complicated one, but a rule of thumb seems 
to be to expect bias and variance of 2 on the order of 1/& for samples of size n. 

EXERCISES 

@ Suppose the mean of a sample of random numbers is estimated by a triangle weighting 
function, i.e., 

Find the scale factor s so that E(m) = m. Calculate Am. Define a reasonable At. 
Examine the uncertainty relation. 

$) A random series x, with a possibly time-variable mean may have the mean estimated 
by the feedback equation 

(a)  Express m, as a function of x,, x,-I, . . . , and not m,-l. 
(b) What is At, the effective averaging time? 
( c )  Find the scale factor b so that if m, = m, then E(m,) = m. 
( d )  Compute the random error Am = [E(m - m)2]1i2 [answer goes to o ( ~ / 2 ) ' ~ ~  as 8 

goes to zero]. 
( e )  What is (Am)' At in this case? 

3 Show that 

4 Define the behavior of an independent zero-mean-time series x,  by defining the proba- 
bilities that various amplitudes will be attained. Calculate E(xi), E(xi2), (AP)'. 



If you have taken a course in probability theory, use a gaussian probability density 
function for xi . HINT: 

and 

4-3 FREQUENCY-STATISTICAL RESOLUTION 

Observations of sea level for a long period of time can be summarized in terms of 
a few statistical averages such as the mean height m and the variance a2. Another 
important kind of statistical average for use on such geophysical time series is 
the power spectrum. Some mathematical models explain only statistical averages 
of data and not the data themselves. In order to recognize certain pitfalls and 
understand certain fundamental limitations on work with power spectra, we first 
consider an idealized example. 

Let xt be a time series made up of independently chosen random numbers. 
Suppose we have n of these numbers. We can then define the data sample poly- 
nomial X(Z) 

We can now make up a power spectral estimate R(z) from this sample of random 
numbers by 

The difference between this and our earlier definition of spectrum is that a potller 
spectrum has the divisor n to keep the expected result from increasing linearly 
with the somewhat arbitrary sample size n. 

The definition of power spectrum is the expected value of a ,  namely 

It might seem that a practical definition would be to let n tend to infinity in (4-3-2) 
Such a definition would lead us into a pitfall which is the main topic of the present 
section. Specifically, from Fig. 4-2 we conclude that R(z) is a much fuzzier 
function than R(Z), so that 

R(Z)# l ima(Z)  (4-3-4) 
n-a, 

To understand why this is so, we identify coefficients of like powers of Z in (4-3-2). 
We have 
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FIGURE 4-2 
Amplitude spectra [R(z) ] ' I2  of samples of n random numbers. These functions 
seem to oscillate over about the same range for n = 512 as they do for n = 32. 
As n tends to infinity we expect infinitely rapid oscillation. 

enabling us to write (4-3-2) for real time series x,  = E, as 
n -  1 

= Po + 2 1 P, cos ko (4-3-6) 
k =  1 

Let us examine (4-3-6) for large n.  To do this, we will need to know some of the 
statistical properties of the random numbers. Let them have zero mean m = E(x,) 
= 0 and let them have known constant variance a2 = E ( x , ~ )  and recall our assump- 
tion of independence which means that E(x,x ,+ , )  = 0 if 0 # s. Because of random 
fluctuations, we have learned to expect that 3, will come out to be a2 plus a random 
fluctuation component which decreases with sample size as I/&, namely 

Likewise, PI should come out to be zero but the definition (4-3-5) leads us to expect 
a fluctuation component 
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FIGURE 4-3 
Positive lags of autocorrelation of 36 random numbers. 

For the kth correlation value k > 1 we expect a fluctuation of order 

n - k  a2 
P k =  +-- 

Jn (4-3-7c) 

Equation (4-3-7) for a particular set of random numbers is displayed in Fig. 4-3. 
Now one might imagine that as n goes to infinity the fluctuation terms vanish and 
(4-3-2) takes the limiting form R = c2. Such a conclusion is false. The reason is 

,- 

that although the individual fluctuation terms go as 1 1  J n  the summation in 
(4-3-6) contains n such terms. Luckily, these terms are randomly canceling one 
another so the sum does not diverge as &. We recall that the sum of n random 
signed numbers of unit magnitude is expected to add up to a random number in 
the range f &. Thus the sum (4-3-6) adds up to 

This is the basic result that a power spectrum estimated from the energy density 
of a sample of random numbers has a fluctuation from frequency to frequency 
and from sample to sample which is as large as the expected spectrum. 

It should be clear that letting n go to infinity does not take us to the theoreti- 
cal result = a2. The problem is that, as we increase n, we increase the frequency 
resolution but not the statistical resolution. To increase the statistical resolution 
we need to simulate ensemble averaging. There are two ways to do this: (1) Take 
the sample of n points and break it into k equal-length segments of nlk points each. 
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Compute an R(o) for each segment and then add all k of the R(co) together, or 
(2) form R(m) from the n-point sample. Of the n/2 independent amplitudes, 
replace each one by an average over its k nearest neighbors. Whichever method, 
(1) or (2), is used it will be found that Af = 0.5klnz and (Ap/p)2 = inverse of number 
of degrees of freedom averaged over = Ilk. Thus, we have 

If some of the data are not used, or are not used effectively, we get the usual 
inequality 

Thus we see that, if there are enough data available (n large enough), we can get 
as good resolution as we like. Otherwise, improved statistical resolution is at the 
cost of frequency resolution and vice versa. 

We are right on the verge of recognizing a resolution tradeoff, not only 
between Af and Ap but also with At = nz, the time duration of the data sample. 
Recognizing now that the time duration of our data sample is given by At = nz, 
we obtain the inequality 

This inequality will be further interpreted and rederived from a somewhat different 
point of view in the next section. 

In time-series analysis we have the concept of coherency which is analogous 
to the concept of correlation defined in Sec. 4-2. There we had for two random 
variables x and y that 

Now if x, and y, are time series, they may have a relationship between them which 
depends on time-delay, scaling, or even filtering. For example, perhaps Y(Z) = 
F(Z) X(Z) + N(Z) where F(Z) is a filter and n, is unrelated noise. The generalization 
of the correlation concept is to define coherency by 

Correlation is a real scalar. Coherency is complex and expresses the frequency 
dependence of correlation. In forming an estimate of coherency it is always essential 
to simulate some ensemble averaging. Note that if the ensemble averaging were to 
be omitted, the coherency (squared) calculation would give 

ICI2 = cc= ( x Y ) ( ~  Y) 
( X X ) (  FY) 

= i - 1  



FIGURE 4-4 
Model of random time series generation. 

x, = ranzom numbers - - 

which states that the coherency squared is + 1 independent of the data. Because 
correlation scatters away from zero we find that coherency squared is biased 
away from zero. 

4-4 TIME-FREQUENCY-STATISTICAL RESOLUTION 

f, 
Filter 

Many time functions are not completely random from point to point but become 
more random when viewed over a longer time scale. A popular mathematical 
model embodying this concept is to make a so-called stationary time series by 
putting random numbers into a filter as depicted in Fig. 4-4. The input x, may be 
independent random numbers or white light. [The two terms mean nearly the same 
thing in practice but the first term is the stronger; it means that x, is in no way re- 
lated to x, if t # s, whereas white light means that E(x,x,) = 0 if t # s.] The output 
random time series y,  may vary rather slowly from point to point if ji is a low-pass 
filter. This is the usual case when we are modeling conti~iuous time functions. The 
random time series may be called a stationary random time series if neither the filter 
nor any property of the random numbers (such as m or a)  vary with time. Station- 
arity is often assumed even where it cannot be strictly true. 

This model will be useful later when we consider the problem of predicting 
a future point on y, from knowledge of past values. Now we will use the model 
to examine the estimation of the spectrum of y, given a sample of n points of y , .  
To begin with, we have a very precise meaning for the spectrum of y , .  We have 

y ,  = random time series 
+ 

and its conjugate 

Multiplying (4-4-1) by (4-4-2) we get 

but, from the previous section, we learned that E ( x X )  = a2. Considering a2 to be 
unity, we see that the expected power spectrum of the output Y is the energy 
spectrun~ of the filter F. The overall situation is depicted in Fig. 4-5. The interest- 
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FIGURE 4-5 
Spectral estimation. 

ing question is how well can we estimate the spectrum when we start with an 
n-point sample of y, . We will describe three computationally different methods, 
all having the same fundamental limitations. 

The first method uses a bank of filters as shown in Fig. 4-6. When random 
numbers excite the narrowband filter, the output is somewhat like a sine wave. It 
differs in one important respect. A sine wave has constant amplitude, but the out- 
put of a narrowband filter has an amplitude which swings over a range. This is 
illustrated in Fig. 4-7. If the bandwidth is narrow, the amplitude changes slowly. 
If the impulse response of the filter has duration At,,,,,, , then the output amplitude 
at time t will be randomly related to the amplitude at time t + Atfilter. Thus, 

FIGURE 4-6 
Spectral estimate of a random series. 
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FIGURE 4-7 
1,024 random numbers before and after narrowband filtering. The filter was 
(1 -Z)/[(l-Z/Zo)(l -Z/ZO)] where Zo = 1.02 e ' " I 5 .  

in statistical averaging, it is not the number of time points but the number of 
intervals Atfilter which enhance the reliability of the average. Consequently, the 
decay time of the integrator Atintegrator will generally be chosen to be greater than 
Atfilter = l/AJ The variability Ap of the output p decreases as Atintegrator increases. 
Since v, has independent values over time spans of about Atfilter = l/AA then 
the " degrees of freedom " smoothed over can be written Atintegrator/Atfilter = 

Af Atintegrator. The variability Ap/p is proportional to the inverse square root of 
the number of degrees of freedom, and so we get 

or, introducing the usual inequality, 

The inequality (4-4-4) indicates the three-parameter uncertainty which is funda- 
mental to estimating power spectra of random functions. Two other methods of 
estimating the spectrum of y, from a sample of length n are exactly the same as 



RESOLUTION 83 

the methods described in Sec. 4-3 as ways of estimating the spectrum of white 
light. In fact, (4-4-4) turns out to be the same as (4-3-9). 

The usual interpretation is that to attain a frequency resolution of Af and a 
relative accuracy of Ap/p a time sample of duration at least At 2 l/[Af(Ap/p)2] 
will be required. Although this sort of interpretation is generally correct, it will 
break down for highly resonant series recorded for a short time. Then the data 
sample may be predictable an appreciable distance off its ends so that the effective 
At is somewhat (perhaps appreciably) larger than the sample length. 

EXERCISES 

I It is popular to taper the ends of a data sample so that the data go smoothly to zero 
at the ends of the sample. Choose a weighting function and discuss in a semiquanti- 
tative fashion its effect on At, Af, and (Apl~)~.  

2 Answer the question of Exercise 1, where the autocorrelation function is tapered 
rather than the data sample. 

4-5 THE CENTRAL-LIMIT THEOREM 

The central-limit theorem of probability and statistics is perhaps the most important 
theorem in the fields of probability and statistics. A derivation of the central limit 
theorem explains why the gaussian probability function is so frequently encoun- 
tered in nature; not just in physics but also in the biological and social sciences. 
No experimental scientist should be unaware of the basic ideas behind this theorem. 
Although the result is very deep and is even today the topic of active research, we 
can get to the basic idea quite easily. 

One way to obtain random integers from a known probability function is to 
write integers on slips of paper and place them in a hat. Draw one slip at a time. 
After each drawing replace the slip in the hat. The probability of drawing the inte- 
ger i is given by the ratio ai of the number of slips containing the integer i divided 
by the total number of slips. Obviously the sum over i of ai must be unity. Another 
way to get random integers is to throw one of a pair of dice. Then all ai equal zero 
except a, = a, = a, = a4 = a, = a6 = &. The probability that the integer i will 
occur on the first drawing and the integer j will occur on the second drawing is 
a ia j  . If you draw two slips or throw a pair of dice, then the probability that the 
sum of i and j equals k is readily seen to be 

Since this equation is a convolution, we may look into the meaning of the Z 
transform 
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FIGURE 4-8 
The complex numbers aceiak added 
together. 
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w = O  Re A 

In terms of Z transforms the probability that i plusj equals k is simply the coeffici- 
ent of Z k  in 

Obviously, if we add n of the random numbers, the probability that the sum of 
them equals k is given by the coefficient of Z k  in 

The central-limit theorem of probability says that as n goes to infinity the poly- 
nomial G(Z) goes to a special form, almost regardless of the specific polynomial 
A(Z). The specific form is such that a graph of the coefficients of G(Z)  comes 
closer and closer to fitting under the envelope of the bell-shaped gaussian function. 
Let us see why this happens. Our development will lack a mathematical rigor 
because the theorem is not always true. There are pathological A functions which 
do not result in G tending to gaussian. Despite the fact that some of the patholog- 
ical functions sometimes turn up in applications, we will not take the time here to 
look at such instances. 

Consider the size of A(Z) for real o. If co = 0, the sum of the terms of A(Z) 
may be visualized in the complex plane as a sum of vectors akeiwk all pointing in 
the positive real direction. If o # 0 the vectors point in different directions. This 
is shown in Fig. 4-8. 

In raising ~ ( e ' " )  to the nth power, the values of cu of greatest concern are 
those near o = 0 where A is largest-because in any region where A is small An 
will be extremely small. Near o = 0 or Z = 1 we may expand A ( Z )  in a power 
series in o 
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Note that the coefficients of this power series are proportional to the moments mi 
of the probability function; that is 

When we raise A(Z) to the nth power we will make the conjecture that only the 
given first three terms of the power series expansion will be important. (This 
assumption clearly fails if any of the moments of the probability function are 
infinite.) Thus, we are saying that as far as G is concerned the only important 
things about A are its mean value m = m, and its second moment m,. If this is 
really so, we may calculate G by replacing A with any function B having the same 
mean and same second moment as A.  We may use the simplest function we can 
find. A good choice is the so called binomial probability function given by 

Let us verify its first moment 

Now let us verify its second moment 

Hence, a should be chosen so that 
2 m2 = m + a2 (4-5-17) 



FIGURE 4-9 
Coefficients of [Zm(Z" + 2-")/2In. 

Of course, we cannot expect that m and a will necessarily turn out to be integers; 
therefore (4-5-1 1) will not necessarily be a Z transform in the usual sense. It does 
not really matter; we simply interpret (4-5-1 1) as saying: 

1 The probability of drawing the number m + a is one-half. 
2 The probability of m - a is one-half. 
3 The probability of any other number is zero. 

Now, raising (2" + Z-") to the nth power gives a series in powers of Z" whose 
coefficients are symmetrically distributed about Z to the zero power and whose 
magnitudes are given by the binomial coefficients. A sketch of the coefficients of 
B(Z)" is given in Fig. 4-9. 

We will now see how, for large n, the binomial coefficients asymptotically 
approach a gaussian. Approaching this limit is a bit tricky. Obviously, the sum 
of n random integers will diverge as f i. Likewise the coefficients of powers of Z 
in (3 + 213)" individually get smaller while the number of coefficients gets larger. 
We recall that in time series analysis we used the substitution Z = ei" At. We 
commonly chose At = 1, which had the meaning that data points were given at 
integral points on the time axis. In the present probability theory application of 
Z transforms, the choice At = 1 arises from our original statement that the numbers 
chosen randomly from the slips of paper were integers. Now we wish to add n of 
these random numbers together; and so, it makes sense to rescale the integers to 
be integers divided by ,/;. Then we can make the substitution -2 = ri" At = eiwtJ'. 

The coefficient of Zk  now refers to the probability of drawing the number k / , / i .  
Raising (2" + 2-")I2 to the nth power to find the probability distribution for the 
sum of n independently chosen numbers, we get 

- COS - -i ;)" 



Using the first term of the series expansion for cosine we have 

Using the well-known fact that (1 + xln)" -+ex, we have for large n 

[B(Z)In w e - ~ 2 ~ 2 1 2  (4-5- 18) 

The probability that the number t will result from the sum is now found by 
inverse Fourier transformation of (4-5-18). The Fourier transform of the gaussian 
(4-5-18) may be looked up in a table of integrals. It is found to be the gaussian 

4-6 CONFIDENCE INTERVALS 

It is always important to have some idea of the size and influence of random errors. 
It is often important to be able to communicate this idea to others in the form of 
a statement such as 

In a matter of any controversy you may be called upon to define a probability 
that the true mean lies in your stated interval; in other words, what is your confidence 
that m lies in the interval 

Before you can answer questions about probability, it is necessary to make some 
assumptions and assertions about the probability functions which control your 
random errors. The assertion that errors are independent of one another is your 
most immediate hazard. If they are not, as is often the case, you may be able to 
readjust the numerical value of n to be an estimate of the number of independent 
errors. We did something like this in time series analysis when we took n to be 
not the number of points on the time series but the number of intervals of length 
Atfi,,,, . The second big hazard in trying to state a confidence interval is the com- 
mon assumption that, because of the central-limit theorem and for lack of better 
information, the errors follow a gaussian probability function. If in fact the data 
errors include blunders which arise from human errors or blunders from transient 
electronic equipment difficulties, then the gaussian assumption can be very wrong 
and can lead you into serious errors in geophysical interpretation. Some useful 
help is found in the field of nonparametric statistics (see, for example, Ref. [18]). 

To begin with, it is helpful to rephrase the original question into one involv- 
ing the median rather than the mean. The median m, is defined as that value which 
is expected to be less than half of the population and greater than the other half. 
In many-if not most-applications the median is a ready, practical substitute for 



the arithmetic mean. The median is insensitive to a data point, which, by some 
blunder, is near infinity. In fact, median and mean are equal when the prob- 
ability function is symmetrical. For a sample of n numbers (xi, i = 1,2, . . . , n), 
the median m, may be estimated by reordering the numbers from smallest to largest 
and then selecting the number in the middle as the estimate of the median A,. 
Specifically, let the reordered xi be denoted by xi where xi I xi + , . Then we have 
A, = xi,, . Now it turns out that without knowledge of the probability density 
function for the random variables x i  we will still be able to compute the proba- 
bility that the true median m, is contained in the interval 

For example, set a = 1 and N = 100, the assertion is that we can now calculate 
the probability that the true median m, lies between the 40th and the 60th percentile 
of our data. The trick is this : Define a new random variable 

The step function equals + 1 if x > m, and equals 0 if x < m,. The new random 
variable y takes on only values of zero and one with equal probability; thus we 
know its probability function even though we may not know the probability 
function for the random variable x. Now define a third random variable s as 

Since each y ,  is zero or one, then s must be an integer between zero and n. Further- 
more, the probability that s takes the value j is given by the coefficient of ~j of 
(f + 212)". Now the probability that s lies in the interval n/2 - a& < s < n/2 + 
or& is readily determined by adding the required coefficients of z ~ ,  and this 
probability is by definition equal to the probability that the median m, lies in the 
interval (4-6-1). For cc = 1 and large n this probability works out to about 95 
percent. 
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Familiarity with matrices is essential to computer modeling in both physical and 
social sciences. As this is a big subject covered by many excellent texts at all levels, 
our review will be a quick one. We focus on those properties required in the suc- 
ceeding chapters. We avoid proofs, and although constructions given should be 
useful in most situations, there will be occasional matrices (which we will dismiss 
as pathological cases) in which our constructions will fail. In practice, the user 
should always check computed results. Unfortunately, the so-called pathological 
cases arise in practice far more often than might be expected. When matrix 
difficulties arise, the first tendency of the scientist is to use a higher-precision 
arithmetic. In the author's experience, physically meaningful calculations rarely 
require high precision. When higher precision seems to be needed, it is often be- 
cause something is happening physically which shows that the problem being solved 
is a poorly posed problem. If a slight change in the problem should not make a 
drastic change in the answer, then it may happen that a different organization of 
the calculations will obviate the need for high precision. Anyway, our discussion 
here will focus on the nonpathological cases, but the reader is warned that patho- 
logical cases will certainly be encountered in practice and when they are they will 
be a stern test. of the reader's mathematical knowledge and physical insight. 



5-1 REVIEW OF MATRICES 

A set of simultaneous equations may be written as 

where A is a square matrix (nonsquare matrices are taken up in Chap. 6 on least 
squares) and x and b are column vectors. In a 2 x 2 case, (5-1-la) becomes 

Equation (5-1-lb) has a simple geometric interpretation. The two columns of the 
matrix and the column b are regarded as vectors in a plane. Equation (5-1-lb) says 
x, times the first column vector plus x, times the second column vector equals the 
b column vector. Difficulty arises when the two column vectors of the matrix 
point in the same direction. Unless b just happens to be that direction, no solution 
x,,  x, is possible. The same thing may be said about the general case. A solution 
x to equation (5-1-la) exists if b lies in the space spanned by the columns of A. 
In most practical situations the matrix A and the column b arise from independent 
considerations so that it is often reasonable to require the columns of A to span a 
space which will contain an arbitrary b vector. If A is an n x n matrix, then its 
columns are required to span an n-dimensional space. In particular, the n-dimen- 
sional parallelopiped with edges given by the columns of A should not have a zero 
volume. Such a volume is given by the determinant of A. 

Another set of simultaneous equations which arises frequently in practice is 
the so-called homogeneous equations 

This set always has the solution x = O  which is often called the trivial solution. 
For (5-1-2) to have nontrivial solution values for x the determinant of A should 
vanish, meaning that the columns of A do not span an n-dimensional space. We will 
return later to the subject of actually solving sets of simultaneous equations. 

A most useful feature of matrices is that their elements may be not only 
numbers but that they may be other matrices. Viewed differently, a big matrix may 
be partitioned into smaller submatrices. A surprising thing is that the product of 
two matrices is the same whether there are partitions or not. Study the identity 

In terms of summation notation, the left-hand side of (5-1-3) means 

whereas the right-hand side means 



Equations (5-1-4) and (5-1-5) are obviously the same; this shows that this parti- 
tioning of a matrix product is merely rearranging the terms. Partitioning does not 
really do anything at all from a mathematical point of view, but it is extremely 
important from the point of view of computation or discussion. 

We now utilize matrix partitioning to develop the bordering method of matrix 
inversion. The bordering method is not the fastest or the most accurate method 
but it is quite simple, even for nonsymmetric complex-valued matrices, and it also 
gives the determinant and works for homogeneous equations. The bordering 
method proceeds by recursion. Given the inverse to a k x k matrix, the method 
shows how to find the inverse of a (k+ 1) x (k+ 1) matrix, which is the same 
old k x k matrix with an additional row and column attached to its borders. 
Specifically, A, e, f, g, and A-' are taken to be known in (5-1-6). The task is to 
find W, x, y, and z. 

The first thing to do is multiply the partitions in (5-1-6) together. For the first 
column of the product we obtain 

A choice of W of 

leads to (5-1-7) being satisfied identically. This leaves x still unknown, but we may 
find it by substituting (5-1-9) into (5-1-8) 

Now, to get the column unknowns y and z, we compute the second column of the 
product (5- 1-6) 

Ay+fi=O (5-1-11) 

ey+gz = 1 (5-1-12) 

Multiply (5-1-1 1) by A-I 

This gives the column vector y within a scale factor z. To get the scale factor, we 
insert (5-1-13) into (5-1-12) 



FIGURE 5-1 
A Fortran computer program for matrix 40 
inversion based .on the bordering 
method. 

SUBROUTINE CMAINE (N , B ,A) 
A=MATRIX INVERSE OF B 
COMPLEX B,A,C,R,DE'L 
DIMENSION A(N,N),B(N,N),R(~o~),c(~~~) 
DO 10 I=l,N 
DO 10 J=l,N 
A(I ,J)=O. 
DO 40 L=l,N 
DEL=B (L , L) 
DO 30 I=l,L 
C(I)=O. 
R(I)=O. 
DO 20 J=l,L 
C (I)=C(I)+A(I, J)*B(J,L) 
R(I)=R(I)+B(L,J)*A(J,I) 
DEL=DEL-B(L, I)*C (I) 
C (L)=-1. 
R (L)=-1. 
DO 40 I=l,L 
c (I)=c (I) IDEL 
DO 40 J=l,L 
A(I,J)=A(I, J)+C(I)*R(J) 
RETURN 
END 

It may, in fact, be shown that the determinant of the matrix being inverted is given 
by the product over all the bordering steps of the denominator of (5-1-14). Thus, 
if at any time during the recursion the denominator of (5-1-14) goes to zero, the 
matrix is singular and the calculation cannot proceed. 

Let us summarize the recursion: One begins with the upper left-hand corner of 
a matrix. The corner is a scalar and its inverse is trivial. Then it is considered 
to be bordered by a row and a column as shown in (5-1-6). Next, we find the 
inverse of this 2 x 2 matrix. The process is continued as long as one likes. A typical 
step is first compute z by (5-1-14) and then compute A-' of one larger size by 

[eA-' ! - 11 (5-1-15) 
zeros : 

where (5-1-1 5) was made up from (5-1-9), (5- 1- lo), and (5- 1- 13). A Fortran com- 
puter program to achieve this is shown in Fig. 5-1. 

It is instructive to see what becomes of A-' if A is perturbed steadily in such 
a way that the determinant of A becomes singular. If the element g in the matrix 
of (5-1-6) is moved closer and closer to eA-If, then we see from (5-1-14) that z 
tends to infinity. What is interesting is that the second term in (5-1-15) comes to 
dominate the first, and the inverse tends to infinity times the product of a column 
c with a row r. 

The usual expressions AA-I = I  or A-'A = I  in the limit of small z - l  tend to 

Acr =z- l1  (5-1-16) 
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In the usual case (rank A = n - 1, not rank A < n - 1) where neither c nor r vanish 
identically, (5- 1- 16) and (5- 1-17) in the limit z- ' = 0 become 

In summary, then, to solve an ordinary set of simultaneous equations like 
(5-1-l), one may compute the matrix inverse of A by the bordering method and 
then multiply (5-1-1) by A- ' obtaining 

In the event b vanishes, we are seeking the solution to homogeneous equations and 
we expect that z will explode in the last step of the bordering process. (If it happens 
earlier, one should be able to rearrange things.) The solution is then given by the 
column c in (5- 1 - 18). 

The row homogeneous equations of (5-1-19) was introduced because such a 
set arises naturally for the solution to the row eigenvectors of a nonsymmetric 
matrix. In the next section, we will go into some detailed properties of eigenvectors. 
A column eigenvector c of a matrix A is defined by the solution to 

where A is the so-called eigenvalue. At the same time, one also considers a row 
eigenvector equation 

To have a solution for (5-1-21) o'r (5-1-22), one must have det(A - 11) =O. After 
finding the roots A j  of the polynomial det(A - M), one may form a new matrix A' 
for each Aj  by 

then the solution to 

arises from the column c at the last step of the bordering. It is the column eigen- 
vector. Likewise, the row eigenvector is the row in the last step of the bordering 
algorithm. 

EXERCISES 

1 Indicate the sizes of all the matrices in equations (5-1-7) to (5-1-14) 
2 Show how (5-1-15) follows from (5-1-9), (5-1-10), (5-1-13), and (5-1-14). 
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5-2 SYLVESTER'S MATRIX THEOREM 

Sylvester's theorem provides a rapid way to calculate functions of a matrix. 
Some simple functions of a matrix of frequent occurrence are A-' and AN(for N 
large). Two more matrix functions which are very important in wave propagation 
are eA and A ' /~ .  Before going into the somewhat abstract proof of Sylvester's 
theorem, we will take up a mumerical example. Consider the matrix 

It will be necessary to have the column eigenvectors and the eigenvalues of this 
matrix; they are given by 

Since the matrix A is not symmetric, it has row eigenvectors which differ from the 
column vectors. These are 

We may abbreviate equations (5-2-2) through (5-2-5) by 

The reader will observe that r or c could be multiplied by an arbitrary scale factor 
and (5-2-6) would still be valid. The eigenvectors are said to be normalized if scale 
factors have been chosen so that r, c, = 1 and r2 c2 = 1 .  It will be observed that 
r, c, = 0 and r2 c, = 0, a general result to be established in the exercises. 

Let us consider the behavior of the matrix c,r,. 

Any power of this matrix is the matrix itself, for example its square. 
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This property is called idempotence (Latin for self-power). I t  arises because 
(clrl)(clrl) = cl(rl cl)rl = clrl. The same thing is of course true of c2r2. Now 
notice that the matrix clrl is "perpendicular" to the matrix c2r2, that is 

since r2 and c2 are perpendicular. 
Sylvester's theorem says that any function f of the matrix A may be written 

f(A) = f(2l)clrl +f(22)c2r2 

The simplest example is f(A) =A 

Another example is 

The inverse is 

The identity matrix may be expanded in terms of the eigenvectors of the matrix A. 

Before illustrating some more complicated functions let us see what it takes to prove 
Sylvester's theorem. We will need one basic result which is in all the books on 
matrix theory, namely, that most matrices (see exercises) can be diagonalized. In 
terms of our 2 x 2 example this takes the form 

where 

Since a matrix commutes with its inverse, (5-2-9) implies 



Postmultiply (5-2-8) by the row matrix and premultiply by the column matrix. 
Using (5-2- lo), we get 

Equation (5-2-11) is (5-2-7) in disguise, as we can see by writing (5-2-11) as 

Now to get A2 we have 

Using the orthonormality of clrl and c2r2 this reduces to 

It is clear how (5-2-1 1) can be used to prove Sylvester's theorem for any polynomial 
function of A. Clearly, there is nothing peculiar about 2 x 2 matrices either. This 
works for n x n. Likewise, one may consider infinite series functions in A. Since 
almost any function can be made up of infinite series, we can consider also trans- 
cendental functions like sine, cosine, exponential. 

Exponentials arise naturally as the solutions to differential equations. Con- 
sider the matrix differential equation 

One may readily verify the power series solution 

This is the power series definition of an exponential function. If the matrix A is 
one of that vast majority which can be diagonalized, then the exponential can be 
more simply expressed by Sylvester's theorem. For the numerical example we have 
been considering, we have 

The exponential matrix is a solution to the differential equation (5-2-12) without 
regard to boundaries. It frequently happens that physics gives one a differential 
equation 
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subject to two boundary conditions on either of y,  or y, or a combination. One 
may verify that 

is the solution to (5-2-13) for arbitrary constants k ,  and k ,  . Boundary conditions 
are then used to determine the numerical values of k ,  and k ,  . Note that k ,  and k2 
are just y,(x = 0 )  and y2(x = 0).  

An interesting situation arises with the square root of a matrix. A 2 x 2 
matrix like A will have four square roots because there are four possible combi- 
nations for choice of plus or minus signs on ,/G and JG. In general, an n x n 
matrix has 2" square roots. An important application arises in a later chapter, 
where we will deal with the differential operator (k2 + d 2 / d ~ 2 ) 1 1 2 .  The square root 
of an operator is explained in very few books and few people even know what it 
means. The best way to visualize the square root of this differential operator is to 
relate it to the square root of the matrix M where 

The right-hand matrix is a second difference approximation to a second partial 
derivative. Let us define 

M = k21 + T 

Clearly we wish to consider M generalized to a very large size so that the end 
effects may be minimized. In concept, we can make M as large as we like and for 
any size we can get 2M square roots. In practice there will be only two square roots 
of interest, one with the plus roots of all the eigenvalues and the other with all the 
minus roots. How can we find these "principal value'' square roots? An impor- 
tant case of interest is where we can use the binomial theorem so that 

The result is justified by merely squaring the assumed square root. Alternatively, 
it may be justified by means of Sylvester's theorem. It should be noted that on 
squaring the assumed square root one utilizes the fact that I and T commute. 
We are led to the idea that the square root of the differential operator may be 
interpreted as 



provided that k is not a function of x. If k is a function of x, the square root of 
the differential operator still has meaning but is not so simply computed with the 
binomial theorem. 

EXERCISES 

1 Premultiply (5-2-66) by rl and postmultiply (5-2-6c) by cz , then subtract. Is A1 f Az a 
necessary condition for rl and c2 to be perpendicular? Is it a sufficient condition? 

2 Show the Cayley-Hamilton theorem, that is, if 

then 

3 Verify that, for a general 2 x 2 matrix A, for which 

where hl and A2 are eigenvalues of A. What is the general form for c2r2? 
4 For a symmetric matrix it can be shown that there is always a complete set of eigen- 

vectors. A problem sometimes arises with nonsymmetric matrices. Study the matrix 

as E --t 0 to see why one eigenvector is lost. This is called a defective matrix. (This 
example is from T. R. Madden.) 

5 A wide variety of wave-propagation problems in a stratified medium reduce to the 
equation 

What is the x dependence of the solution when ab is positive? When ab is negative? 
Assume a and b are independent of x. Use Sylvester's theorem. What would it take 
to get a defective matrix? What are the solutions in the case of a defective matrix? 

6 Consider a matrix of the form I + vvT where v is a column vector and vT is its transpose. 
Find (I + vvT)-I in terms of a power series in vvT. [Note that ( v v ~ ) ~  collapses to vvT 
times a scaling factor, so the power series reduces considerably.] 

7 The following "cross-product" matrix often arises in electrodynamics. Let 
B =(Bx, By, Bz) 

(a) Write out elements of I + U2. 
(b) Show that U(1 i- UZ) = 0 or U3 = -U. 
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(c) Let v be an arbitrary vector. In what geometrical directions do Uv, UZv, and 
(I + U2)v point? 

( d )  What are the eigenvalues of U. [HINT: Use part (b).] 
(e) Why cannot U be canceled from U3 = -U? 
(f) Verify that the idempotent matrices of U are 

clrl = ( I  + U2) 

5-3 MATRIX FILTERS, SPECTRA, AND FACTORING 

Two time series can be much more interesting than one because of the possibility 
of interactions between them. The general linear model for two series is depicted 
in Fig. 5-2 

The filtering operation in the figure can be expressed as a matrix times vector 
operation, where the elements of the matrix and vectors are Z transform poly- 
nomials. That is, 

One fact which is obvious but unfamiliar is that a matrix with polynomial elements 
is exactly the same thing as a polynomial with matrix coefficients. This is illus- 
trated by the example : 

Now we can address ourselves to the inverse problem; given a filter B and the 
outputs Y how can we find the inputs X? The solution is analogous to that of 
single time series. Let us regard B(Z) as a matrix of polynomials. One knows, for 
example, that the inverse of any 2 x 2 matrix 

FIGURE 5-2 
Two time series x ,  and x2 input to a 
matrix of four filters illustrates the 
general linear model of multichannel -xz 
filtering. 
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Consequently Y = BX may be solved for X as X = B-'Y where 

The denominator is a scalar. We have treated scalar denominators before. If all 
the zeros lie outside the unit circle, we can use an ordinary power series for the 
inverse; otherwise, it is not minimum-phase and we use a Laurent series. 

When one generalizes to many time series, the numerator matrix is the so- 
called adjoint matrix and the denominator is the determinant. The adjoint matrix 
can be formed without the use of any division operations. In other words, elements 
in the adjoint matrix are in the form of sums of products. For this reason, we may 
say that the criterion for a minimum-phase matrix wavelet is that the determinant 
of its Z transform has no zeros inside the unit circle. 

Equation (5-3-1) is a useful description of Fig. 5-2 in most applications. 
However in some applications (where the filter is an unknown to be determined), 
a transposed form of (5-3-1) is more useful. If b12 was interchanged with b2, in 
Fig. 5-2, we could use the " row data " expression 

Now that we have generalized the concept of filtering from scalar-valued time 
series to vector-valued series, it is natural to generalize the idea of spectrum. For 
vector-valued time functions, the spectrum is a matrix called the spectral matrix 
and it is given by 

i t  will be noticed that the vector times vector operation defining (5-3-3) is an 
" outer product" rather than the more usually occurring "inner product." The 
diagonals of the spectral matrix R contain the usual auto-spectrum of each channel. 
Off-diagonals contain the cross spectrum. Because (5-3-3) is an outer product, the 
matrix is singular. Now, instead of taking [Yl(Z) Y2(Z)] to have a time function 
with a finite amount of energy, let us suppose the filter inputs to (5-3-2), namely 
(xl(t), x2(t)) are made up of random numbers, independently drawn from some 
probability function at every point in time. In this case, y,(t) and y2(t) are random 
time series and their spectral matrix is defined like (5-3-3) but taking an expectation 
(average over the ensemble). We have 

R(o) = E  - [ Y ,  Y2] [ 21 
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substituting from (5-3-2) 

Now, grouping the ensemble summation with the random variables, we get 

Next, we explicitly introduce the assumption that the random numbers x,(t) are 
drawn independently of x2(t), thus E(x2(l/z)X,(z)) = 0 and the assumption that 
xi(t) is white E[xi(t)xi(t + s)] = 0 if s # 0 and of unit variance E [ x ~ ( ~ ) ~ ]  = 1. Thus 
(5-3-4) becomes 

[pu Bill  [l 01 [Bll Biz] R =  - 
B12 B22 0 1 B21 B22 

Of course, in practice the spectral matrix must be estimated, say R, from finite 
samples of data. This means that ensemble summation must be simulated. If the 
ensemble sum in (5-3-4) is simulated by summation over one point (no summation), 
then (5-3-4) is a singular matrix like (5-3-3). As discussed earlier, the accuracy of 
the elements of the spectral matrix improves with the square root of the number of 
ensemble elements summed over. 

Single-channel spectral factorization gives insight into numerous important 
problems in mathematical physics. We have seen that the concepts of filter and 
spectrum extend in quite a useful fashion to multichannel data. It was only natural 
that a great deal of effort should have gone to spectral factorization of multichannel 
data. This effort has been successful. However, in retrospect, from the point of 
view of computer modeling and interpretation of observed waves, it must be 
admitted that multichannel spectral factorization has not been especially useful. 
Nevertheless a brief summary of results will be given. 

The root method The author extended the single-channel root method to the 
multichannel case [Ref. 191. The method is even more cumbersome in the multi- 
channel case. A most surprising thing about the solution is that it includes a much 
broader result: that a polynomial with matrix coefficients may be factored. For 
example, 

14 -11 
factors 6 ways to 
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The Toeplitz method The only really practical method for finding an invertible 
matrix wavelet with a given spectrum is the multichannel Toeplitz method. The 
necessary algebra is developed in a later section on multichannel time series pre- 
diction. 

The explog and Hilbert transform methods A number of famous mathematicians 
including Norbert Wiener have worked on the problem from the point of view of 
extending the exp-log or the Hilbert transform method. The principal stumbling 
block is that exp(A + B) does not equal exp(A) exp(B) unless A and B happen 
to commute, that is, AB = BA. This is usually not the case. Although many 
difficult papers have appeared on the subject (some stating that they solved the 
problem), the author is unaware of anyone who ever wrote a computer program 
which works at  fast Fourier transform speeds as does the single-channel Hilbert 
transform method. 

EXERCISES 

1 Think up a matrix filter where the two outputs yl(t) and yz(t) are the same but for a 
scale factor. Clearly X cannot be recovered from Y. Show that the determinant of the 
filter vanishes. Find another example in which the determinant is zero at one frequency 
but nonzero elsewhere. Explain in the time domain in what sense the input cannot 
be recovered from the output. 

2 Given a thermometer which measures temperature plus or times pressure and a pressure 
gage which measures pressure plus times the time rate of change of the temperature, 
find the matrix filter which converts the observed series to temperature and pressure. 
[HINT: Use either the time derivative approximation 1 - Z or 2(1- Z)/(l + Z).] 

3 Let 

Identify coefficients of powers of Z in B(Z)A(Z) = I, to recursively develop the co- 
efficients of A(Z) = [B(Z)]-l. 

4 Express the inverse of 

in a Taylor or Laurent series as is necessary. 
[':" 3 

5 The determinant of a polynomial with matrix cofficients may be independent of Z. 
Applied to matrix filters, this may mean that an inverse filter may have only a finite 
number of powers in Z instead of the infinite series one always has with scalar filters. 
What is the most nontrivial example you can find? 

5-4 MARKOV PROCESSES 

A Markov process is another mathematical model for a time series. Until now it 
has found little use in geophysics, but we will include it anyway because it might 
become useful and it is easily explained with the methods previously developed. 



Suppose that x, could take on only integer values. A given value is called a 
state. As time proceeds, transitions are made from the jth state to the ith state 
according to a probability matrix pij .  The system has no memory. The next state 
is probabilistically dependent on the current state but independent of the previous 
states. The classic example is of a frog in a lily pond. As time goes by, the frog 
jumps from one lily pad to another. He may be more likely to jump to a near one 
than to a far one. He may prefer big to small pads, and he doesn't remember the 
last pad he was on. The state of the system is the number of the pad the frog 
currently occupies. The transitions are his jumps. 

To begin with, one defines a state probability ni(k), the probability that the 
system will occupy state i after k transitions if its state is known at k = 0. We also 
define the transition matrix Pij . Then 

n(k + 1) = Pn(k) (5-4- 1) 

The initial-state probability vector is n(0). Since the initial state is known, then 
n(0) is all zeros except for a one (I) in the position corresponding to the initial state. 
For example, see the state-transition diagram of Fig. 5-3. 

The diagram corresponds to the probability matrix 

Since at each time a transition must occur, we have that the sum of the elements in 
a column must be unity. In other words, the row vector [l 1 1 11 is an eigen- 
vector of P with unit eigenvalue. Let us define the Z transform of the probability 
vector as 

n ( z )  = ~ ( o )  + z ~ ( I )  + z2n(2) + . . (5-4-2) 

In terms of Z transforms (5-4-1) becomes 

Thus we have expressed the general solution to the problem as a function of the 
matrix P times an initial-state vector. There will be values of Z for which the 

FIGURE 5-3 
An example of a state-transition 
diagram. 



inverse matrix to (I - ZP) does not exist. These values Zj are given by det(1 - ZjP) 
= 0 or det(P - Z j  'I) = 0. Clearly the z;' are the eigenvalues of P. Utilizing 
Sylvester's theorem, then, we have 

Some modification to (5-4-4) is required if there are repeated eigenvalues. Equation 
(5-4-4) is essentially a partial fraction expansion. A typical term has the form 

Thus coefficients at successive powers of Z decline with time in the form (Z,:')'. 
It is clear that, if probabilities are to be bounded, the roots l /Z j  must be inside the 
unit circle (recall minimum phase). We have already shown that one of the roots 
2, is always unity. This leads to the " steady-state " solution I t  = 1. In our 
particular example, one can see by inspection that the steady-state probability 
vector is 10 0 0 1IT SO the general solution is of the form 

Finally, a word of caution must be added. Occasionally defective matrices 
arise (incomplete set of eigenvectors) and for these the Sylvester theorem does not 
apply. In such cases, the solutions turn out to contain not only terms like 2,:' 
but also terms like tZ-t and t22-'. It is the same situation as that applying to 
ordinary hfferential equations with constant coefficients. Ordinarily, the solutions 
are of the form (ri)' where ri is the ith root of the indicia/ equation but the presence 
of repeated roots gives rise to solutions like trit. A mathematical survey of the 
subject is given by Seneta [Ref. 201. 



DATA MODELING LEAST SQUARES 

The reconciliation of theory and data is the essence of science. An ubiquitous tool 
in this task is the method of least-squares fitting. Elementary calculus books 
generally consider the fitting of a straight line to scattered data points. Such an 
elementary application gives scant hint of the variety of practical problems which 
can be solved by the method of least squares. Some geophysical examples which 
we will consider include locating earthquakes, analyzing tides, expanding the 
earth's gravity and magnetic fields in spherical harmonics, and doing interesting 
things with time series. When the past of a time series is available, one may find 
that least squares can be used to determine a filter which predicts some future 
values of the time series. When a time series which has been highly predictable for a 
long stretch of time suddenly becomes much less predictable an " event" is said to 
have occurred. A filter which emphasizes such events is called a prediction-error 
Jilter. If one is searching for a particular dispersed wavelet in a time series, it may 
help to design a filter which compresses the wavelet into some more recognizable 
shape, an impulse for example. Such a wave-shaping filter may be designed by 
least squares. With multiple time series which arise from several sensors detecting 
waves in space, least squares may be used to find filters which respond only to certain 
directions and wave speeds. 

Before we begin with the general theory, let us take up a simple example in 



the subject of time series analysis. Given the input, say x = (2, 1) to some filter, say 
f = (fo, fl) then the output is ne'cessarily c = (2f0, fo + 2fl, f,). To design an 
inverse filter we would wish to have c come out as close as possible to (I, 0, 0). In 
order to minimize the difference between the actual and the desired outputs we 
minimize 

E(f0 , f l )  = (2fo - + (fo + 2f1l2 + (f1l2 

The sum E of the squared errors will attain a minimum if fo and f, are chosen so that 

Cancelling a 2 and arranging this into the standard form for simultaneous equations, 
we get 

and the solution is 

The actual c which comes out of this filter is (H, +A, -A) which is not a bad 
approximation to (1, 0, 0). 

6-1 MORE EQUATIONS THAN UNKNOWNS 

When there are more linear equations than unknowns, it is usually impossible to 
find a solution which satisfies all the equations. Then one often looks for a solution 
which approximately satisfies all the equations. Let a and c be known and x be 
unknown in the following set of equations where there are more equations than 
unknowns. 

Usually there will be no set of x i  which exactly satisfies (6-1-1). Let us 
define an error vector e j  by 



It simplifies the development to rewrite this equation as follows (a trick I learned 
from John P. Burg). 

-el a,, 

[I i: a2 ''1 [;'I = [':I (6- 1-3) 

-cn a,, - . -  Xm en anm 

We may abbreviate this equation as 

B x = e  (6-1-4) 

where B is the matrix containing c and a. The ith error may be written as a dot 
product and either vector may be written as the column 

Now we will minimize the sum squared error E defined as 1 ei2 

I '  

'a 
The summation may be brought inside the constants 

The matrix in the center, call it r i j ,  is symmetrical. It is a positive (more strictly, 
nonnegative) definite matrix because you will never be able to find an x for which E 
is negative, since E is a sum of squared e i .  We find the x with minimum E by 
requiring aE/dxl = 0, aE/ax2 = 0, . . . , dE/ax, = 0. Notice that this will give us 
exactly one equation for each unknown. In order to clarify the presentation we will 
specialize (6- 1-6) to two unknowns. 

roo r01 '-02 

= X l  ..I[;:: ;:: ;;][id (6-1-7) 

Setting to zero the derivative with respect to x,, we get 
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Since rij = rji, both terms on the right are equal. Thus (6-1-8) may be written 

Likewise, differentiating with respect to x2 gives 

Equations (6-1-9) and (6-1- 10) may be combined 

This form is two equations in two unknowns. One might write it in the more 
conventional form 

The matrix of (6-1-1 1) lacks only a top row to be equal to the matrix of (6-1-7). To 
give it that row, we may augment (6-1-1 1) by 

where (6- 1- 13) may be regarded as a definition of a new variable v. Putting (6- 1 - 13) 
on top of (6-1-1 1) we get 

roo ro1 Yo2 E] = [;;; ;: ;:] [i] (6-1-14, 

The solution x of (6-1- 12) or (6- 1- 14) is that set of x, for which E is a minimum. To 
get an interpretation of v, we may multiply both sides by [I x, x2], getting 

Comparing (6-1-1 5) with (6-1-7), we see that u is the minimum value of E. 
Occasionally, it is more convenient to have the essential equations in parti- 

tioned matrix form. In partitioned matrix form, we have for the error (6-1-6) 



The final equation (6-1-14) splits into 

where (6-1-18) represents simultaneous equations to be solved for x. Equation 
(6-1-18) is what you have to set up in a computer. It is easily remembered by a 
quick and dirty (very dirty) derivation. That is, we began with the overdetermined 
equations Ax w c;  premultiplying by AT gives (ATA)x = ATc which is (6-1-18). 

In physical science applications, the variable z j  is frequently a complex 
variable, say zj  = x j  + i y j .  It is always possible to go t h u g h  the foregoing 
analyses, treating the problem as though xi and y i  were real independent variables. 
There is a considerable gain in simplicity and a saving in computational effort by 
treating z j  as a single complex variable. The error E may be regarded as a function 
of either x j  and y j  or z j  and z j  . In general j = 1, 2, . . . , N, but we will treat the 
case N = 1 here and leave the general case for the Exercises. The minimum is found 
where 

Mmltiplying (6-1-20) by i and adding and subtracting these equations, we may 
express the minimum condition more simply as 

However, the usual case is that E is a positive real quadratic function of z and 
5 and that dE/az is merely the complex conjugate of aE/aZ. Then the two conditions 
(6-1-21) and (6-1-22) may be replaced by either one of them. Usually, when 
working with complex variables we are minimizing a positive quadratic form like 

where * denotes complex-conjugate transpose. Now (6- 1-22) gives 

which is just the complex form of (6-1-18). 
Let us consider an example. Suppose a set of wave arrival times ti is measured 

at sensors located on the x axis at points xi. Suppose the wavefront is to be fitted to 
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a parabola ti FZ a + bx, + cxi2. Here, the xi are knowns and a, b, and c are un- 
knowns. For each sensor i we have an equation 

When i has greater range than 3 we have more equations than unknowns. In this 
example, (6-1-14) takes the form 

This may be solved by standard methods for a, b, and c. 
The last three rows of (6-1-26) may be written 

This says the error vector ei is perpendicular (or normal) to  the functions 1, x, and 
x2, which we are fitting to  the data. For that reason these equations are often 
called normal equations. 

EXERCISES 

1 Extend (6-1-24) by fitting waves observed in the x,  y plane to a two-dimensional 

c;1 
quadratic. 

, ,  2 Let y(t) constitute a complex-valued function at successive integer values of t. Fit 
y(t) to a least-squares straight line y(t) x a + /It where a = a, + ia, and /3 = p, + ip, . 
DO it two ways: (a) Assume a,, a , ,  p i ,  and /3, are four independent variables, and 
(b) Assume a, 6, /3, and p are independent variables. (Leave answer in terms of 
S. = Ctt".) 

3 Equation (6-1-14) has assumed all quantities are real. Generalize equation (6-1-14) to 
all complex quantities. Verify that the matrix is Hermitian. 

4 At the jth seismic observatory (latitude xj , longitude y,) earthquake waves are ob- 
served to arrive at time tj . It has been conjectured that the earthquake has an origin 
time t ,  latitude x, and longitude y. The theoretical travel time may be looked up in a 
travel time table T(A) where T is the travel time and A is the great circle angle. One has 

cos A = sin y sin y, + cos y cos yi cos (x  - xi) 

The time residual at the jth station, supposing that the earthquake occurred at (x, y, t), 
is 
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The time residual, supposing that the earthquake occurred at (x + dx, y + dy, t + dt), 
is 

aT aa aT aA 
e j= t+dt+T(Aj)+  -- (a. ax), dx + (z G) , dy - ti 

Find equations to solve for dx, dy, and dt which minimize the sum-squared time 
residuals. ,@ 5 Gravity g, has been measured at N irregularly spaced points on the surface of the earth 
(colatitude xi, longitude yj , j = 1, N). Show that the matrix of the normal equation 

I?/?/ l> which fits the data to spherical harmonics may be written as a sum of a column times 
its transpose, as in the preceding problem. How would the matrix simplify if there 
were infinitely many uniformly spaced data points? (NOTE: Spherical harmonics S 
are the class of functions 

S."(x, y) = Pr(cos x) exp (imy) 
. 

for (m = -n, . . . , - 1,0, 1, . . . , n) and (n = 0, 1, . . . , GO) where P; is an associated 
Legendre polynomial of degree n and order m. 

6 Ocean tides fit sinusoidal functions of known frequencies quite accurately. Associated 
with the tide is an earth tilt. A complex time series may be made from the north-south 
tilt plus d 2  times the east-west tilt. The observed complex time series may be 
fitted to an analytical form zy=, A j  ~ ' O J ' .  Find a set of equations which may be solved 
for the A j  which gives the best fit of the formula to the data. Show that some elements 
of the normal equation matrix are sums which may be summed analytically. 

7 The general solution to Laplace's equation in cylindrical coordinates (r, 8) for a 
potential field P which vanishes at r = oo is given by 

Find the potential field surrounding a square object at the origin which is at unit 
potential. Do this by finding N of the coefficients A, by minimizing the squared 
difference between P(r, 8) and ~nity~integrated around the square. Give the answer 
in terms of an inverse matrix of integrals. Which coefficients A, vanish exactly by 
symmetry ? 

6-2 WEIGHTS AND CONSTRAINTS 

I t  often happens that some observations are considered more reliable than others. 
One may desire to weight the more reliable data more heavily in the calculation. In 
other words, we may multiply the ith equation by a weight J< 

Now the weighted sum-squared error will be 

E = w i  ei2 (6-2-2) 
1 
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Following the method of the last section, it is easy to show that the x which mini- 
mizes the weighted error E of (6-2-2) is the x which satisfies the simultaneous 
equations 

Choice of a set of weights is often a rather subjective matter. However, if data are 
of uneven quality, it cannot be avoided. Omitting w is equivalent to choosing it 
equal to  unity. 

A case of common interest is where some equations should be solved exactly. 
Such equations are called constraint equations. Constraint equations often arise 
out of theoretical considerations so they may, in principle, not have any error. 
The rest of the equations often involve some measurement. Since the measurement 
can often be made many times, it is easy to get a lot more equations than unknowns 
Since measurement always involves error, we then use the method of least squares 
to  minimize the average error. In order to be certain that the constraint equations 
are solved exactly, one could use the trick of applying very large weight factors to 
the constraint equations. A problem is that "very large" is not well defined. A 
weight equal 10'' might not be large enough to guarantee the constraint equation is 
satisfied with sufficient accuracy. On the other hand, 10'' might lead to disastrous 
round-off when solving the simultaneous equations in a computer with eight- 
digit accuracy. The best approach is to analyze the situation theoretically for w -+ co. 

An example of a constraint equation is that the sum of the x i  equals M. An- 
other constraint would be x ,  = x,. Arranged in a matrix, these two constraint 
equations are 

We write a general set of k constraint equations as 

Minimizing the error as w -+ co of the equations 

is algebraically similar to  minimizing the error of Bx z 0. The rows of JFG are 
just like some extra rows for B. The resulting equation for x is 



Now we will take all the wi  to equal 1/& and we will let E tend to zero. Also let 

x = x ( ~ )  + &xu) + E2X(2) + . . . (6-2-7a) 
v = v ( ~ )  + Ev(l) + E2v(2) + . . . (6-2-73) 

With this, (6-2-6) may be written 

Identify coefficients of powers of E 

c l ,  c2 : not required 

Equation (6-2-9a) is m equations in m unknowns. I t  will automatically be satisfied 
if the k equations in (6-2-5) are satisfied. Equation (6 2-9b) appears to involve the m 
unknowns in x(O) plus rn more unknowns in x(". In fact, we do not need x('); the k 
unknowns 

L = Gx"' (6-2- 10) 

will suffice. 
Arranging (6-2-9b) and (6-2-5) together and dropping superscripts, we get a 

square matrix in nz + k unknowns. 

Equation (6-2-1 1) is now a simultaneous set for the unknowns x and L. It 
might also be thought of as the solution to the problem of minimizing the quadratic 
form 

and since we can always transpose a scalar, 

According to the method of Lagrange multipliers, one may minimize a 
quadratic form subject to constraints by minimizing instead a sum of the quadratic 
form plus constraint terms where each constraint term is the product of a constraint 
equation multiplied by a Lagrange multiplier Ai. This is precisely what we have in 
(6-2- 12), and the solution is given by (6-2- 1 1). Lagrange multipliers frequently 



arise in connection with integral equations. The concept is readily transformed to 
matrices merely by approximating integration by summation. 

EXERCISE 

1 In determining a density us. depth profile of the earth one might minimize the squared 
difference between some theoretical quantities (say, the frequencies of free oscillation) 
and the observed quantities. By astonomical means, total mass and moment of inertia 
of the earth are very well known. If the earth is divided into arbitrarily thin shells of 
equal thickness, what are the two astronomical constraint equations on the layer 
densities p i ?  If the least-squares problem is nonlinear (as it often is) it may be linear- 
ized by assuming that a given set of densities pi  is a good guess which satisfies the 
constraints and doing least squares for the perturbation dpi . What are the constraint 
equations on dpi? 

6-3 FEWER EQUATIONS THAN UNKNOWNS 

What is one to do when one has fewer equations than unknowns: give up? Cer- 
tainly not, just apply the principle of simplicity. Let us find the simplest solution 
which satisfies all the equations. This situation often arises. Suppose, after having 
made a finite number of measurements one is trying to determine a continuous 
function, for example, the mass density p(r) as a function of depth in the earth. 
Then, in a computer p(r) would be represented by p(r) sampled at N depths r i  , i = 1, 
2, . . . , N. Then merely by taking N large, one has more unknowns than equations. 

One measure of simplicity is that the unknown function xi has minimum 
wiggliness. In other words minimize 

subject to satisfying exactly the observation or constraint equations 

Another more popular measure of simplicity (which does not imply an ordering of 
the variables xi) is the minimization of 

If we set out to minimize (6-3-3) without any constraints, x would satisfy the 
simultaneous equations 

[ zeros I=:;] [i] = [ii] 



By inspection one sees the obvious result that xi  = 0. Now let us include two 
constraint equations and, for definiteness, take three unknowns. The method of 
the previous section gives 

Equation (6-3-4) has a size equal to the number of variables plus the number of 
constraints. It may be solved numerically or it may be first reduced to a matrix 
whose size is given by the number of constraints. Let us split up (6-3-4) into two 
equations : 

and 

We abbreviate these equations by x + GT3, = 0 and Gx = d. Premultiply (6-3-5) 
by G, 

G X +  G G ~ ~ = O  

insert (6-3-6) 

d + G G ~ ~  = o 
solve for k 

T - 1  A = - ( G G )  d 

put back into (6-3-5) 

x = G ~ ( G G ~ ) -  Id 

Written out in full this is 

This is the final result, a minimum wiggliness solution x which exactly satisfies an 
underdetermined set called the constraint equations. 



EXERCISES 

1 If wiggliness is defined by (6-3-1) instead of (6-3-3), what form does (6-3-7) take? 
2 Given the mass and moment of intertia of the earth, calculate mass density as a 

function of depth utilizing the principle of minimum wiggliness (6-3-7). What criticism 
do you have of this procedure? (HINT : An elegant solution uses integrals instead of 
infinite sums.) 

3 Use the techniques of this section on (6-2-11) to reduce the size of the matrices to be 
inverted. 

6-4 HOUSEHOLDER TRANSFORMATIONS AND 
GOLUB'S METHOD [Ref. 211 

Our previous discussions of least squares always led us to matrices of the form 
ATA which then needed to be inverted. Golub's method of using Householder 
transformations works directly with the matrix A and has the advantage that it is 
considerably more accurate than methods which invert ATA. It seems that about 
twice as much precision is required to invert ATA than is needed to deal directly 
with A. Another reason for learning about Golub's method is that the calculation 

. 

is organized in a completely different way; therefore, it will often turn out to have 
other advantages or disadvantages which differ from one application to the next. 

T T A reflection transformation is a matrix of the form R = (I - 2vv /v v) 
where v is an arbitrary vector. Obviously R is symmetric, that is, R = RT. It also 
turns out that the reflection transformation is its own inverse, that is, R = R-'.  To 
see this, we verify by substitution that R~ = I. 

A matrix transformation M is said to be unitary if MTM = I. When a matrix M is 
unitary it means that the vector x has the same length as the vector Mx. These 
lengths are xTx and ( ~ x ) ~ ( M x )  = xTMTMx = xTIx = xTx which are the same. 
Reflection transformations are unitary because R-' = RT. They have a simple 
physical interpretation. Consider an orthogonal coordinate system in which one of 
the coordinate axes is aligned along the v vector. Reflection transformation 
reverses the sign of this coordinate axis vector (since Rv = -v) but it leaves 
unchanged all the other coordinate axis vectors. Thus it is obvious geometrically 
that reflection transformations preserve lengths and that applying the transforma- 
tion twice returns any original vector to itself? Now, we seek a special reflection 
transformation called the Householder transformation which converts a matrix 
of the form on the left to the form on the right where a is an arbitrary element 



Having determined the required transformation, we will know how to convert any 
matrix t o  an upper triangular form like 

a a a a  

0 0 0 0  

by a succession of Householder transforms. Golub recognized the value of this 
technique in solving overdetermined sets of simultaneous equations. He noted 
that when the error vector e = Ax - b is transformed by a unitary matrix Ue the 
problem of minimizing the length (eTUTUe)'I2 of Ue by variation of x reduces to 
exactly the same problem as minimizing the length (eTe)lI2 of e with respect to 
variation of x. Thus a succession of Householder transforms could be found to 
reduce e = Ax - b to  the form 

Now for the clever observation that because of the zeros in the bottom part of the 
transformed A matrix there is no possibility of choosing any x i  values which alter e2 
in any way. The top part of the transformed A matrix is an upper triangular matrix 
which for any value of el  can be solved exactly for the x i .  The least-squares solu- 
tion xi is the one for which e,  has been set equal to zero. 

Now we return to the task of finding the special reflection transformation, 
called the Householder transformation, which accomplishes (6-4-2). Observe that 
the left-hand operator below is a reflection transformation for any numerical choice 
of s. 
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Alternatively, if (6-4-5) is to be valid, then s must take a particular value such that 

This will be true only for s given by 
2 112 s = 4 (a,2 + a42 + a5 ) (6-4-8) 

Now let us see why the left-hand operator in (6-4-5) can achieve (6-4-2). Choice of 
the a vector as the third column in the matrix of (6-4-2) introduces the desired 
zeros on the right-hand side. Finally, it is necessary also to observe that this choice 
of H does not destroy any of the zeros which already existed on the left-hand side in . 
(6-4-2). A subroutine for this task is in Fig. 6-1. Householder transformations can 
also be used in problems with constraints. In the set 

one may desire to satisfy the top block exactly and the bottom block only in the 
least-squares sense. Define y as a succession of Householder transforms on x; for 
example, y = H2 H,x. Then substitute x = HIH, Hz Hlx = HlH2 y into (6-4-9). 
Householder transforms used as postmultipliers on the matrix of (6-4-9) can be 
chosen to introduce zeros in the top two rows of (6-4-9), for example 

a 0 0 0  [. a a a a  z : :I["] Y 3 ; [ I  (6-4-10) 

a a a a  Y 4 
b3 

Now we could use premultiplying Householder transforms on (6-4-10) to bring it 
to the form 

a 0 0 0  

[z a a O a  . : :I["] Y 3 %[:I (6-4-11) 

a a O O  Y 4 
b3 

Since the top two equations of (6-4-10) or of (6-4-1 1) are to be satisfied exactly, then 
y, and y, are uniquely determined. They cannot be adjusted to help attain minimum 



SUBROUTINE GOLUB (A,x, B ,M, N) 
C 
C A(M,N) ; B(M) GIVEN WITH M>N SOLVES FOR X(N) SUCH THAT 
C I I B - AX I I = MINIMUM 
C METHOD OF G.GOLUB, NLTMERISCHE MATHEMATIK 7,206-216 (1965) 
C 

IMPLICIT DOUBLE PRECISION (D) 
REAL A(M,N) ,X(N) ,B(M) ,U(50) 

C.......DIMENSION U(M) 
C.......PERFORM N ORTHOGONAL TRANSFORMATIONS TO A(.,.) TO 
C.......UPPER TRIANGULARIZE THE MATRIX 

DO 3010 K=l,N 
DSrnl=O. OD0 
DO 1010 I=K,M 
DAJ=A(I,K) 

1010 DSUM=DSUM+DAJ**2 
DAI=A(K, K) 
DSIGMA=DSIGN(DSQRT (DSUM) ,DAI) 
DBI=DSQRT (1. ODDCDAIIDSIGMA) 
DFACT=l. ODO/ (DSIGMA*DBI) 
U (K) =DBI 
FACT=DFACT 
KPLUS=K+l 
DO 1020 I=KPLUS,M 

1020 U (I)=FACT*A(I,K) 
C.......I - UU' IS A SYIiMETRIC, ORTHOGONAL MATRIX WHICH WHEN,APPLIED 
C....... TO A(.,.) WILL ANNIHILATE THE ELEMENTS BELOW THE DLAGONAL K 

DO 2030 J=K,N 
c.......APPLY THE ORTHOGONAL TRANSFORMATION 

FACT=O. 0 
DO 2010 I=K,M 

2010 FACT=FACT+U(I)*A(I,J) 
DO 2020 I=K,M 

2020 A(I,J)=A(I,J)-FACT*U(I) 
2030 CONTINUE 

FACT=O . 0 
DO 2040 I=K,M 

2040 FACT=FACT+U(I)*B(I) 
DO 2050 I=K,M 

2050 B (I)=B (I)-FACT*U (I) 
3010 CONTINUE 

C.......BACK SUBSTITUTE TO RECURSIVELY YIELD X(.) 
X(N)=B(N) /A(N,N) 
LIM=N-1 
DO 4020 I=l,LIM 
IROW=N-1 
SUM=O. 0 
DO 4010 J=l,I 

4010 SUM=SUM+X(N-J+l)*A(IROW,N-J+1) 
4020 X(IROW)=(B(IROW)-SUM)/A(IROW,IROW) 

RETURN 
END 

FIGURE 6-1 
Subroutine for least squares fitting. Programmed by Don C. Riley. Note 
that this program does not do the square matrix case. It is necessary that M > N. 

error in the bottom three equations. Likewise the top two equations place no 
restraint on y3 and y,, so they may be adjusted to produce minimum error in the 
bottom three equations. No amount of adjustment in y,  and y, can change the 
amount of error in the last equation, so we can ignore the last equation in the 
determination of y3 and y, . The third and fourth equations can be satisfied with 
zero error by suitable choice of y,  and y,. This must be the minimum-squared- 
error answer. Given y we can go back and get x with x = H,H, y. 
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6-5 CHOICE OF A MODEL NORM 

In recent years, a popular view of geophysical data modeling has been that the 
earth is a continuum and that we should regard the number of unknowns as 
infinite but the number of our observations as finite. In a computer one therefore 
approximates the situation by a highly underdetermined system of simultaneous 
equations. In order to  get a unique answer, the solution should extremalize some 
integral. In practice, a sum of squares is often minimized in such a way as to  
produce a smooth solution. A typical mathematical formulation is to do a least- 
squares fitting of an equation set like 

where the top block A denotes the underdetermined constraint equations with the 
data vector d; the unknowns are in the x vector; and the bottom block is a band 
matrix (all the nonzero elements cluster about the diagonal) which says that some 
filtered version of x should vanish. The filter is often a roughing filter like the 
first-difference operator. In the absence of data, the first-difference operator leads 
to a constant solution which is sensible. What is not sensible is that it forces the 
result to  be smoothed even though realistic earth models often contain step dis- 
continuities (where two homogeneous media lie in contact). 

The choice of a filter io a rather subjective matter, the choice often being made 
on the basis of the solution it will produce. Unfortunately, the solution is often a 
rather sensitive function of the subjectively chosen weights and filters; this fact 
makes the whole business an art, a matter of experience and judgment. General- 
purpose theories of inversion exist, but they do not prepare the geophysicist to 
exploit the peculiarities of any particular stituation or data set. Inversion theories, 
like mathematical statistics, should be used like a lamp post-to light the way, not 
to  lean upon. 

One useful concept in inversion theory is the idea of coordinate-system 
invariance. The idea is that one should get the same answer in an electrical con- 
ductivity problem whether one parameterizes the earth by an unknown conductivity 
at every point on a sufficiently dense mesh, or one parameterizes with resistivity on 
the mesh, or one parameterizes by coefficients of some expansion in a complete set of 
basis functions. Clearly, the idea of fitting low-order coefficients in some expansion 
setting the high-order coefficients equal to zero is not a coordinate-invariant 
approach. A different origin for polynomial expansions can change everything. A 
different set of basis functions would change everything. Of course, it is not essen- 
tial to use a coordinate-system invariant technique in data inversion. But if one 
does not, one should beware of the sensitivity of one's solution to changes in the 
coordinate system. 

Let us consider some inversion procedures which are coordinate-system 
invariant. We will restrict ourselves to  physical problems in which we can identify a 
positive density function p as energy or dissipation per unit volume. Let us denote 
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FIGURE 6-2 
Minimizing either of these two functions will drive p toward p.  

by p the value of this power as a function of space in the default model of the 
earth. The default model is the one we want to find when we have no measure- 
ments. It will often be one in which the material properties are constant functions of 
space. Now we will need some functions which we will call model norms. They 
have the properties of being positive for all (positive) p and p and being minimized 
at p = p. Some examples plotted in Fig. 6-2 are 

Now let the adjustable earth properties be denoted by x, a function of space. 
We can choose x to minimize some volume integral of one of the model norms 
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subject to the constraint that the model produce the required observations. Some- 
times we have observations from j = 1,2,3, . . . , n, source locations. We then need 
to compute the default power distribution pj for each. Then we can minimize a 
sum of volume integrals 

min 5 [ N(pj,pj)dV 

subject to fitting all the data values. 
It will be noted that the model-norm functions are all homogeneous of order 1. 

This means that N(ap, ap) = aN(p, p) for a > 0. This is our assurance that N is a 
volume density. Without this property we would have the difficulty that a sum of 
Nk(p, p) over a set of subvolumes AV, would change as the mesh were refined. 
Coordinate-system invariance is provided by the usual rules for conversion of 
volume integrals from one coordinate system to another. 

Now let us take up an example from filter theory which turns out to be 
related to maximum-entropy spectral estimation. We are given a known input 
spectrum R(Z) and are to find the finite length filter X(Z) = x, + x,Z + x, Z2 
whose output is as white as possible in the sense of minimizing the integral of N, 
across the spectrum. Let the spectrum of the filter be S(Z) = X(1/Z) X(Z). We have 
p = 1 and p = R(Z) S(Z). Thus, the minimization is 

min = (-ln R S +  RS)dm S 
Setting the derivative with respect to F, equal zero we have 

as 
O = / ( - ; + R ) - ~ ~  ax, 

Since we know that minimum-phase functions can represent any spectrum, we 
take X(l/Z)-' to be expandable as (6, + 6 , / ~  + b, / z2  + . . .) 

We recall that this integral selects the coefficient of Z0 of the argument. If we 
suppose that the filter is constrained to have xk = 0 for k 2 3, we get the familiar 
Toeplitz system 
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6-6 ROBUST MODELING 

The median and the mean are two kinds of statistical average. In a normal situation 
they behave in about the same way. At the present time physical scientists almost 
always use the mean and hence tend to be unaware of the dramatic ability of the 
median to cast off the effect of blunders in the data. As an example, consider an 
expensive, all-day-long experiment which yields only one number for a result. On 
the first day the result is 2.17, on the second day it is 2.14, and on the third and final 
day it is 1638.03. The mean of these results is 547.78 but the median (middle value) 
is 2.17. If one suspects a blunder on the third day, one will obviously prefer the 
median. Statisticians call this the " robust " property of the median. The objective 
of this section is to show how many kinds of geophysical data fitting can be made to 
be robust. In particular, all the calculations we now do which amount to solving 
overdetermined linear simultaneous equations by means of summed squared-error 
minimization can be made robust by minimizing summed absolute values of errors, 
instead. Computer costs are often comparable to those of least-squares methods. 
The algorithms turn out to solve a slightly broader class of problem than minimizing 
the summed absolute errors. Positive errors may be penalized with a different 
weight factor than negative errors. Such an arrangement is called an asymmetric 
linear norm. A special case of an asymmetric norm is an inequality. Not sur- 
prisingly, it turns out that all linear programming problems are special cases of 
asymmetric linear-norm problems and the solution techniques for asymmetric 
linear norms are similar to linear programming. 

First, we will see why means and medians relate to squares and absolute 
values. Let x i  be an arbitrary number. Let us define m, by the minimization of the 
sum of squared differences (called the L, norm) between m, and xi :  

N 
m, : min x (m, - xi), (6-6-1) 

i =  1 

It is a straightforward task to find the minimum by setting the partial derivative of 
the sum with respect to m, equal to zero. We get 

Obviously, m, has turned out to be given by the usual definition of mean. Next, let 
us define m, by minimizing the summed absolute values (called the L, norm). We 
have 
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To find the minimum we may again set the partial derivative with respect to  m, 
equal to zero 

N 

0 = 1 sgn (m, - xi) (6-6-4) 
i =  1 

Here the sgn function is + 1 when the argument is positive, - 1 when the argument 
is negative, and somewhere in between when the argument is zero. Equation 
(6-6-4) says that m, should be chosen so that m, exceeds x i  for N/2 terms, m, is less 
than x i  for N/2 terms, and if there is an x i  left in the middle, m, equals that x i .  
This defines m, as a median. [For an even number N the definition (6-6-3) requires 
only that m, lie anywhere between the middle two values of the xi.] 

The computational cost for a mean is proportional to N, the number of 
points. The cost for completely ordering a list of numbers is N In N [Ref. 221, but 
complete ordering is not required for finding the median. Hoare [Ref. 231 provided 
an algorithm for finding the median which requires about 3N operations. A com- 
puter algorithm based on Hoare's algorithm will be provided for weighted medians. 
Weighted medians are analogous to weighted sums. Ordinarily, 2.17 is taken to be 
the median of the numbers (2.14, 2.17, 1638.03) because we implicitly applied 
weights (I, 1, I). If we applied weights (3, 1, 1) it would be like having the numbers 
2.14, 2.14, 2.14, 2.17, 1638.03 and the median would then be 2.14. Formally, a 
weighted median may be defined by the minimization 

m,:  m i n ~ / w i / l m l - x i \  (6-6-5) 

Obviously if the weight factors are all unity, this reduces to the earlier definition 
whereas using a weight factor equal to 3, for example, is just like including the same 
term three times with a weight of 1 .  Figure 6-3 illustrates the definition (6-6-5) for a 
simple case. From Fig. 6-3 it is apparent that a median is always equal to one of 
the x i  even if the weights are not integers. If the weights are all unity and there is 
an even number of numbers, then the error norm will be flat between the two 
middle numbers. Then any value in between satisfies our definition of median by 
minimizing the sum. 

Let us rearrange (6-6-5) by bringing 1 wi l  into the other absolute-value 
function. We have 

m,: m i n x  1 / w i ) m  - IwilxiI = m i n x  Iwim - wixil (6-6-6) 
i i 

FIGURE 6-3 
A sum of weighted absolute value 
norms, The function labeled A 
is . 5 / m - 1 ,  B is . 5m-51 ,  
Cis . l lm-21,  and D i s  the sum 
of A,  B, and C. The sum D is 
minimized at m = 2, a point 
which exactly solves C = 0 = . I  I 
m-21. 1 2 5 m 



We will now relabel things from the conventions of statistics to the usual conven- 
tions of simultaneous equations and linear programming. Let 

With these new definitions (6-6-6) becomes 

The definition (6-6-7) says, in other words, to solve the rank one overdetermined 
equations 

for x by minimizing the L ,  norm. This is, in effect, a weighted median problem. If 
(6-6-8) were solved by minimizing the L, norm (least squares) x would turn out 
to be the weighted average x = (a . b)/(a a). 

We now consider a solution technique for the minimization (6-6-5). Essen- 
tially, it is Hoare's algorithm. On a trial basis we select a random equation from 
the set (6-6-8) to be exactly satisfied. This equation, called the basis equation, can 
be denoted a, x,,~,, = b,, . Inserting x,,~,, into (6-6-8) we get equations with positive 
errors, negative errors, and zero errors. If we have been lucky with x,,,,, , then we 
find that the zero error group has enough weight to swing the balance between 
positive and negative weights in either direction. Otherwise, we must pick a new 
trial basis equation from the stronger of the positive or negative group. Fortuna- 
tely, we need no longer look into the weaker group because these residuals cannot 
change signs as we descend into minimum. This may be seen geometrically on a 
figure like Fig. 6-3. We always wish to go downhill, so once it has been ascertained 
that a data point is uphill from the present point then it is never necessary to 
reinspect the uphill point. Thus, the size of the group being inspected rapidly 
diminishes. Figure 6-4 contains a computer program to do these operations. 

The next step up the ladder of complexity is to consider two unknowns. The 
obvious generalization of (6-6-8) is 

We will assume that the reader is familiar with the solution to (6-6-9) by the least- 
squares method. Solution by minimizing the sum of the absolute values of the 
errors begins in a similar way. We begin by defining the error 
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Then we set the x derivative of the error equal to zero and the y derivative of the 
error equal to zero. 

SUBROUTINE SKEWER(ND,N,W,F,GU,GD,SMALL,K,T,ML,MH) 
C SOLVE RANK 1 OVERDETERMINED EQUATIONS WITH SKEW NORM 
C INPUTS- N,W,F,GU,GD,SMALL,K. OUTPUTS- K,T,ML,MH. 
C FIND T TO MINIMIZE 
C N 
C LS = SUM SKEWNORM(K,F (K) -W (K) *T) 
C K= 1 
C WHERE ( GU (K) * (ER-SMALL) IF ER. GT .+SMALL GU . GT 
C SKEWNORM (K, ER) = ( GD (K) * (ER+SMALL) IF ER . LT . -SMALL GD . LT 
C ( 0. IF ABS(ER) .LE.SMALL.GE.O. 
C GU,GD,W,AND F ARE REFERENCED INDIRECTLY AS W(K(I)),I=l,N ETC 
C MINIMA WILL BE AT EQUATIONS K(ML),K(ML+l), ... K(MH). 

DIMENSION W(ND) ,F(ND) ,K(ND) ,GU(ND),GD(ND) 
DIMENSION G (1000) 
LOW=l 
LARGE=N 
ML=N 
MH=1 
GN=O. 
GP=O. 
DO 50 ITRY=l,N 
L=K(Low+MOD((LARGE-LOW)/3+ITRY,LARGE-LOW+l)) 
IF(ABS (W(L)).EQ.O.) GO TO 50 
T=F(L)/(W(L)) 
F(L)=W(L)*T 
DO 10 I=LOW,LARGE 
L=K(I) 
ER=F (L) -W (L) *T 
G(L)=O. 
IF (ER. GT . SMALL) G (L)=-W (L) *GU (L) 

lo IF(ER.LT.-SMALL)G(L)=-W(L)*GD(L) 
CALL SPLIT(LOW,LARGE,K,G,MLT,MHT) 
GNT=GN 
DO 20 I=LOW,MLT 

20 GNT=GNT+G (K (I) ) 
GPT=GP 
DO 30 I=MHT,LARGE 

30 GPT=GPT+G (K(1) ) 
GPLX=O . 
GMIX=O. 
DO 40 I=MLT,MHT 
L=K(I) 
IF(W(L) .LT. o. )GPLX=GPLX-W(L)*GU(L) 
IF (W (L) . GT . 0. )GPLX=GPLX-W (L) *GD (L) 
IF (W (L) . GT . 0. )GMIX=GMIX-W (L) *GU (L) 

40 IF (W(L) . LT. 0. )GMIX=GMIX-W(L)*GD (L) 
GRAD=GNT+GPT 
IF ( (GRAD-PLX) * (GRAD-MIX) . LT . 0 . ) GO TO 60 
IF(GRAD.GE.O.)LOW=MHT+l 
IF(GRAD.LE.O.)LARGE=MLT-1 
IF(LOW.GT.LARGE) GO TO 60 
IF(GRAD.GE.O.)GN=GNT+GMIX 
IF(GRAD.LE.O.)GP=GPT+GPLX 
IF((GRAD+GPLX).EQ.O.)ML=MLT 
IF((GRAD+GMIX).EQ.O.)MH=MHT 

50 CONTINUE 

(continues to next page) 



60 ML=MINO(ML,MLT) 
MH=MAXO (MH,MHT) 
RETURN 
END 

SUBROUTINE SPLIT(LOW,LARGE,K,G,ML,MH) 
C GIVEN G (K (I)), I=LOW, LARGE 
C THEN REARRANGE K(I),I=LOW,LARGE AND FIND ML,MH SO THAT 
C (G(K(I)),I=LOW,(ML-1)) .LT. 0 AND 
C (G(K(1)) ,I=ML,MH)=O. AND 
C (G(K(1)) , I=(MH+l) ,LARGE) .GT. 0. 

DIMENSION K(LARGE) ,G (41) 
ML=LOW 
MH=LARGE 

10 ML=ML-1 
20 ML=ML+l 

IF(G(K(ML)))20,30,30 
30 MH=MH+l 
40 MH=MH-1 

IF(G(K(MH)))50,50,40 
50 KEEP=K(MH) 

K(MH)=K(ML) 
K(ML) =KEEP 
IF(G(K(ML)) .NE.G(K(MH)))GO TO 10 
DO 60 I=ML,MH 
II=I 
IF(G(K(1)) .NE.O.O) GO TO 70 

60 CONTINUE 
RETURN 

7 0 KEEP=K (MH) 
K(MH)=K(T.I) 
K(II)=KEEP 
GO TO 30 
END 

FIGURE 6-4 
- A subroutine to compute weighted and skewed medians. (A "skewed median " 
is often called a quantile.) This subroutine is somewhat complicated because it 
takes special care to do the correct thing when weight factors are zero and 
because it provides pointers to all equations (occasionally there is more than one) 
which are satisfied at the final minimum. 

Now we run into a snag. If the sgn function always takes the value + 1 or - 1, then 
(6-6-1 la) implies that the a, may be divided into two piles of equal weight. Clearly 
many, indeed most, collections of numbers cannot be so balanced (for example, if 
all the a i  except one are integers). The difficulty will be avoided if at least one of the 
equations of (6-6-9) is solved exactly so that sgn takes an indeterminate value for 
that term. Any algebraic confusion may be quickly dispelled by recollection of 
Fig. 6-3 and the result that even with one unknown the minimum generally occurs at 
a corner where the first derivative is discontinuous. The same situation must again 
apply to (6-6-11b). The usual situation is that for N equations and M unknowns 
precisely M of the N equations will be exactly satisfied in order to enable the error 
gradient to vanish at the minimum. Common usage in the field of linear program- 
ming is to refer to any nonsingular subset of M out of the N equations as a set of 
basis equations. The particular set of M equations which is solved when the error 
is minimized is called the optimum basis. 

Although linear programming is a twentieth-century development, the basic 
ideas seem to have been well known before Laplace in the eighteenth century. 
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Indeed, in the words of Gauss' Theoria Motus Corporum Coelestium which appeared 
in 1809 [Ref. 241 : 

Laplace made use of another principle for the solution of linear equations, the number of 
which is greater than the number of unknown quantities, which had been previously 
proposed by Boscovich, namely that the differences themselves, but all of them taken 
positively, should make up as small a sum as possible. It can be easily shown, that a 
system of values of unknown quantities, derived from this principle alone, must neces- 
sarily (except the special cases in which the problem remains, to some extent, indetermin- 
ate) exactly satisfy as many equations out of the number proposed, as there are unknown 
quantities, so that the remaining equations come into consideration only so far as they 
help to determine the choice. 

Further developments and numerous geophysical applications may be found 
in Reference 25. 

Next a simple but effective technique for descent down a multidimensional 
error surface will be described. The position x on a line through x, can be indicated 
by a scalar parameter t. The direction of the line can be specified by an M compo- 
nent vector g. Then any point x on the line may be represented as 

Inserting (6-6- 12) into the overdetermined set 

we obtain 

Defining w and e by 

w = Ag (6-6- 1 5a) 

e = b - Ax, (6-6-1 5b) 

(6-6- 14b) becomes 

Solving (6-6-16) by minimizing the summed absolute errors also gives the minimum 
error along the line in (6-6-14a). But (6-6-16) is the weighted median problem 
discussed earlier. Recall that the solution t to (6-6-16) which gives minimum 
absolute error will exactly satisfy one of the equations in (6-6-16). Let us say 
t = e,/w,. For this value of t, the kth equation in (6-6-13) will also be satisfied 
exactly. The kth equation is now considered to be a good candidate for the basis, 
and we will next show how to pick the vector g so as to  continue to  satisfy the kth 
equation (stay on the kth hyperplane) as we adjust t in the next iteration. 

Now we need a set of basis equations. This is a set of M equations which is 
temporarily taken to be satisfied. Then, as new equations are introduced into the 
basis by the weighted median soiution, old equations are dropped out. The strategy 



of the present algorithm is merely to drop out the one which has been in longest. 
Let us denote our basis equations by 

A'x = d' 

A' is a square matrix. The inverse of the matrix A' will be required and will be 
denoted by B. Now suppose we decide to throw out the pth equation from the 
basis matrix A'. Then for g we select the pth column of B. To see why this works 
note that since A'B = I the M vector A'g will now be the pth column from the 
identity matrix. Therefore, in the N vector w = Ag there is a component equal to 
+ 1, there are M- 1 components equal to 0, and there are N - M other unspeci- 
fied elements. If the kth equation in (6-6-13) or (6-6-16) has been kept in the basis 
(6-6-17), then the kth equation in Agt = d - Ax now reads 

zero t = zero (6-6- 18) 

The left-hand zero is an element from the identity matrix and the right-hand zero is 
from the statement that the kth equation is exactly satisfied. Clearly, we can now 
adjust t as much as we like to attain a new local minimum and the kth equation will 
still be exactly satisfied. There is also one equation of the form 

one t = zero (6-6-19) 

I t  will be satisfied only if t is zero. Geometrically, this means that if we must move 
to get to a minimum, then this equation is not satisfied and so we are jumping from 
this hyperplane. This equation is the one leaving the basis. Of course, if t turns out 
to be zero, then it reenters the basis. The foregoing steps are iterated until such 
time that for M successive iterations the equation thrown out of the basis by virtue 
of its age has immediately reappeared because t = 0. This means that the basis can 
no longer be improved and we have arrived at the optimum basis and the final 
solution. 



WAVEFORM APPLICATIONS OF LEAST SQUARES 

By the methods of calculus, one learns to find the coordinates of an extremal point 
on a curve. In the calculus of variations, one learns how to find extremal functions. 
In practice, the continuum may be approximated on a mesh and the distinction 
blurs. In the calculus of variations problems, however, the matrices can be immense, 
a disadvantage often partially offset by their orderly form. In this chapter we will 
take up examples in the use of least squares on waveforms and relationships between 
groups of waveforms. This leads to a massive full matrix called the block-Toeplitz 
matrix for which we have a special solution technique. 

7-1 PREDICTION AND SHAPING FILTERS 

A data wavelet is given by b = (b,, b,, . . . , b,). We plan to construct a filter 
f = (f,, f,, . . . , f,). Filtering is defined in this way: When data b go into a filter f, 
an output wavelet c is produced according to the following matrix multiplication. 



This operation is often called complete transient convolution. It is the same as 
identifying coefficients in a polynomial multiplication. 

Now we introduce another wavelet d which will have the same number of 
components as c. We call d the desired output of the filter. We saw that c is the 
actual output. The actual output c was seen to be a function of the input b and 
the filter f. The problem now is to determine f so that c and d are very much alike. 
Specifically we will choose f so that the difference vector c - d has minimum 
length squared (in n + m + 1 dimensional space). In other words, we use the 
method of least squares to solve the overdetermined equations 

Using the " quick-and-dirty" method of the previous chapter we merely pre- 
multiply (7-1-2) by the transposed matrix. The result is a Toeplitz matrix of the 
form 

where r, is the autocorrelation of the input x, and g, is a crosscorrelation of the 
input x,  with the desired output d, .  For computation techniques see Chapt. 7-5. 

The formulas of this section may also be used to attempt to predict a time 
series from its past. For example f,, f, , . . . , fm is a prediction filter of x,+ ,, from 
x, , x, -  . . . , x,- ,+ if we solve by least squares the equations 



The matrix in (7-1-4) may be continued downward for as far as one has data. 
In an application, the range of t in  (7-1-4) would be over past values of t. Then, after 
solving the equations for the filter f it would be hoped that the character of the 
time series was such that f could be used to predict future values of the time series 
which had not gone into the equation defining f. 

If the matrix of (7-1-4) is very much higher than it is wide, it may be desirable 
to  treat the end effects differently. If one uses instead 

one finds that the least-squares normal equation has a Toeplitz matrix whereas for 
(7-1-4) the matrix is not Toeplitz. As the reader is aware, the Toeplitz matrix has 
many advantages, both theoretical and computational. 

Of special interest is the filter which is designed from the equations 
- 

zeros 

X 0 

Xn - 
Such a filter is called the prediction errorj l ter  for unit span because the a, 

operate on (x,-,, x,-, , . . .) attempting to cancel x , .  Thus, the a, on the (x ,-,, 
x,-, , . . .) gives the negative of a best prediction of x, based on (x, - ,, x,-, , . . .). 
The normal equations implied by (7-1-6) are the square set 

I t  may be noted that the calculation of a prediction error filter depends only on 
the autocorrelation of the time series and not on the time series itself. As we have 
seen (from 3-3-3), the solutions to these equations are coefficients of a minimum- 
phase polynomial. 



Solutions to Toeplitz equations when the right-hand side takes the more arbi- 
trary form (7-1-3) are not generally minimum-phase, but the Levinson recursion 
may be generalized to make the calculation speedy. This is done in Sec. 7-5 on the 
multichannel Levinson recursion. 

EXERCISES 

I Find a three-term zero delay inverse to the wavelet (1, 2). Compare the error to the 
error of (2, 1). Compare the waveform. An extensive discussion of the error in least- 
squares inverse filters is given in Reference 26. One conclusion is that the sum of the 
squared errors goes to zero as the filter length becomes infinite in two situations: 
(a) Zero delay inverse if and only if the wavelet being inverted is minimum-phase. 
(b) If the wavelet being inverted is not minimum-phase, the error goes to zero only 

if the output is delayed, that is, d = (. . . , 0,0, 1, 0,0, . . .). Calculate a three-term 
delayed inverse to (1, 2), that is, try d = (0, 1, 0,0) or d = (0, 0, I, 0). 

2 A pressure sensor in a deep well records upgoing seismic waves and, at some time to 
later, identical downgoing waves of opposite sign. Determine delayed and non- 
delayed least-squares filters of length m to eliminate the double pulse. (You should be 
able to guess the solution to large matrices of this type. Try filters of the form fk = 

a + pk where a and ,8 are scalars.) What is the error as a function of the filter length? 
3 Let b, = (. . . , 1, 1, -2, 1, 1, -2, . . .). Find by least squares the best one-term filter 

which predicts b, , using only 6,-, . Find the best two-term filter using b,-l and b,-2. 
Likewise find the best three-term filter. What is the error as a function of time in each 
case ? 

7-2 BURG SPECTRAL ESTIMATION [Ref. 271 

The uncertainty principle says that if a time function contains most of its energy 
in the time-span At, then its Fourier transform contains most of its energy in a 
bandwidth Af 2 IlAt. This is not the same as saying that if we have a sample of 
a stationary time series of length At, the best frequency resolution we can hope to 
attain will be Af = l/At. The difference lies in the difference between assuming a 
function is zero outside the interval At in which it is given and in assuming that it 
continues "in a sensible way" outside the given interval. If the data sample can be 
continued "in a sensible way" some distance beyond the interval in which it is 
given, then the frequency resolution Af may be considerably smaller than 1lAt. 
A finer resolution depends upon the predictability of the data off the ends of the 
sample. If one has a segment of a stationary series which is short compared to the 
autocorrelation of the stationary series, then the spectral estimation procedure of 
John P. Burg will be radically better than any truncated Fourier transform method. 
This comes about in physical problems when one is dealing with resonances which 
have decay times that are long compared to the observation time or when one is 
looking at  a function of space where each point in space represents another in- 
strument. 

If a spectrum R(Z) is estimated by X(l/Z)X(z) where X(Z) is a polynomial 



made up from N + I known data points, then the coefficients of R(Z) are com- 
puted by 

Notice that ro is calculated from N + I terms, r1 from N terms, etc. If N is not 
large enough, this will have an undesirable biasing effect. The biasing is removed 
if the rk are computed instead by the formula 

The trouble with using (7-2-2) is that data samples can easily be found for which 
rk will not be a valid autocorrelation function. For example, the spectrum will 
not be positive a t  all frequencies, the solution to Toeplitz equations may blow up, 
etc. 

Burg's approach avoids the end-effect problems of (7-2-1) and the possibility 
of impossible results from (7-2-2). Instead of estimating the autocorrelation r, 
directly from the data he estimates a minimum-phase prediction-error filter directly 
from the data. The output of a prediction-error filter has a white spectrum. (If it 
did not, then the color could be used to improve prediction.) Since the spectrum 
of the output is the spectrum of the input times the spectrum of the filter, the 
spectrum of the input may be estimated as the inverse of the spectrum of the 
prediction-error filter. As we have seen, narrow spectral peaks are far more easily 
represented by a denominator than by a numerator. 

Let the given segment of data be denoted by x, , xl,  . . . , x, . Then a two-term 
prediction-error filter ( I ,  a) of the time series x, is given by the choice of a which 
minimizes 

N 

E(a) = I x, + ax, -, 1 (7-2-3) 
t =  1 

Unfortunately, consideration of a few examples shows that there exist time series 
[like (1, 2)] for which I a I may turn out to be greater than unity. This is unaccept- 
able because the prediction-error filter is not minimum-phase, the spectrum is not 
positive, etc. Recall that a prediction-error filter defined in the previous section 
depends only on the autocorrelation of the data and not the data per se. This 
means that the same filter is computed from both a time series and from the 
(complex-conjugate) time-reversed time series. This suggests that the error of 
forward prediction (7-2-3) be augmented by the error of backward prediction. 
That is 

N 

E ( ~ ) = ~ I X ~ + ~ X , - , / ~ + I Z , - ~ + ~ Z , ~ ~  (7-2-4) 
t =  1 

We will later establish that the minimization of (7-2-4) always leads to an (a1 less 
than unity. The power spectral estimate associated with this value of a is 



R = 1/[(1 + a/Z)(l + aZ)]. The value of Af may be very small if a turns out very 
close to the unit circle. 

A natural extension of (7-2-4) to filters with more terms would seem to be to  
minimize 

Unfortunately, Burg discovered time series for which the computed filter 
A(Z) = 1 + a,Z + a2Z2 was not minimum-phase. If A(Z) is not minimum-phase, 
then R = l/[A(l/Z)A(Z)] is not a satisfactory spectral estimate because R(Z) is to 
be evaluated on the unit circle and l/A(Z) would not be convergent there. 

Burg noted that the Levinson recursion always gives minimum-phase filters. 
In the Levinson recursion a filter of order 3 is built up from one of order 2 by 

Thus Burg decided that instead of using least squares to determine a,  and a, as in 
(7-2-5), he would take a to be given from (7-2-4) and then do a least-squares 
problem to solve for c. This would be done in such a way as to ensure that I cl 
comes out less than unity, which guarantees that A(Z) =1  + a ,Z  + a2Z2 is 
minimum-phase. Thus he suggested rewriting (7-2-5) as 

Now the error (7-2-6), which is the sum of the error of forward prediction plus 
the error of backward prediction, is minimized with respect to variation of c. (In 
a later chapter we will see fit to call c a reflection coefficient.) The quantity a remains 
fixed by the minimization of (7-2-4). Now let us establish that I c 1 is less than unity. 
Denote by e +  the time series x, + ax,-, which is the error in forward prediction 
of x, . Denote by e -  the time series x,-, + ax,-, of error on backward prediction. 
With this, (7-2-6) becomes 

Setting the derivative with respect to E equal to zero 



(One may note that aE/dc = 0 gives the same result.) That I c 1 is always less than 
unity may be seen by noting that the length of the vector e+ f e -  is always 
positive. In particular 

If we now redefine e+ and e -  as 

we have the forward and backward prediction errors of the three-term filter 
(1, a; ,  a;) = ( 1 ,  a ,  - cZ,, -c). One can then return to  (7-2-7) and proceed recur- 
sively. As the recursion proceeds e+ and e-  gradually become unpredictable 
random numbers. We have then found a filter A ( Z )  which filters X(Z) either forward 
or  backward and the output is white light. Since the output has a constant spectrum, 
the spectrum of the input must be the inverse of the spectrum of the filter. 

In later chapters we will discover a wave-propagation interpretation of the 
Burg algorithm. In a layered medium the parameters c, have the interpretation of 
reflection coefficients; the e f  and e -  vectors have the interpretation of up- and 
downgoing waves; and the whole process of calculating a succession of c, amounts 
to  downward continuing surface seismograms into the earth, determining an earth 
model c, as you go. 

EXERCISE 

I Considerthetimeserieswithtenpoints(1,I,1,-1,-1,-1,1,1, I , - ] ) .  ComputeC 
and A up to cubics in Z. Compare the autocorrelation r ,  calculated by Burg's method 
with R(Z) estimated from the truncated sample and with R(Z) estimated by intuitively 
extending the data sample in time to plus and minus infinity. 

2 Modify the program of Fig. 7-1 to compute and include the scale factor V which 
belongs in the spectrum. 

7-3 ADAPTIVE FILTERS 

An adaptive filter is one which changes with time t o  accommodate itself t o  changes 
in the time series being filtered. For example, suppose one were predicting one 
point ahead in a time series. One could take a lot of past data to  design the filter; 
then one could apply the filter to  present incoming data to  predict future incoming 



SUBROUTINE BURGC(LX,X,EP,EM,LC,C,A,N2048,S) 
C GIVEN A TIME SERIES X(l ... LX) GET ITS LOG SPECTRUM S(l ... N2048) 

DIMENSION X(LX) ,EP (LX) ,EM(LX) ,C (LC) ,A(LC) , S (N2048) 
COMPLEX X,EP,EM,C,A,S,TOP,BOT,EPI,CONJG,CLOG 
DO 10 I=l,N2048 

10 S(I)=O. 
A(l)=l. 
DO 20 I=l,LX 
EIf(I)=X(I) 

20 EP (I)=X(I) 
DO 60 J=2,LC 
TOP=O. 
BOT=O. 
DO 30 I=J,LX 
BOT=BOT+EP(I)*CONJG(EP(I))+EM(I-J+l)*CONJG(EM(I-J+l)) 

30 TOP=TOP+EP(I)*CONJG(EM(I-J+l)) 
c (J)=Z*TOP/BOT 
DO 40 I=J,LX 
EPI=EP (I) 
EP (I)=EP(I)-C(J)*EM(I-J+1) 

40 EM(1-J+l)=EM(I-J+1)-CONJG(C (J))*EPI 
A(J)=O. 
DO 50 I=1, J 

50 s(I)=A(I)-C(J)*CONJG(A(J-1+1)) 
DO 60 I=l,J 

60 A(I)=S(I) 
CALL FORK(N2048,S,+l.) 
DO 70 1=1,N2048 

70 S(I)=-CLOG(S(I))*2. 
RETURN 
END 

FIGURE 7-1 
Computer program to do Burg algorithm. The program follows the notation of 
the text. The data Xis  a vector of dimension given to be LX. Choice of LC 5 LX 
is a compromise between high resolution and high scatter. The density of points 
on the frequency axis, which is controlled by N2048 + LX, is chosen for plotting 
convenience and should be great enough to  resolve narrow spectral lines. 

data. As time goes on it might become desirable to recompute the filter on the 
basis of new data which have come in. How often should the filter be redesigned? 
In concept, there is no reason why it should not be reconlputed very often, perhaps 
after each new data point arrives. In practice, this is usually prohibitively expensive. 
For a filter of length n it requires n multiplies and adds to apply the filter to get one 
new output point. To recompute the filter with Levinson recursion requires about n2 

multiply-adds. However, it is usually expected that the filter need only be changed 
by a very small amount when a new data point arrives. For that reason we will 
give the Widrow [Ref. 281 adaptive-filter algorithm which modifies the filter by 
means of only n arithmetic operations. Thus, a new filter is computed after each 
data point comes in. 

For definiteness, consider a two-term prediction situation where et  is the error 
in predicting a time series xt  from two of its past values 

et  = x ,  - b x t - ,  - c x t - ,  (7-3-1) 
The sum squared error in the prediction is 



FIGURE 7-2 
The sign of the partial derivative tells 
whether b > b,i, or b < bn,in.  

* 

bGin 
* 
b 

If the parameter b has been chosen correctly, one should find that dE/db = 0. 
However, if the nature of the time series x ,  is changing with time, dE/ab may depart 
from zero when new data are included in the sum in (7-3-2). Since E is a positive 
quadratic function of b, if dE/db has become positive, then b should be reduced. 
If aE/ab has become negative, then b should be augmented. See Fig. 7-2. 

From (7-3-2) we have 

The change i n ' a ~ l d b  from the addition of the data point x, is just - 2e tx , - ,  ; thus, 
we are motivated to modify b and c in the following way 

Here the number k scales the amount of the readjustment which we are willing to 
make to b and c in one time step. If k is chosen very small, the adjustment will 
take place very slowly. If k is chosen too large, the adjustment will overshoot the 
minimum; however one may hope that it will bounce back, perhaps again over- 
shooting at the next step. The choice of k is dictated in part by the nature of the 
time series x, under study. 

There are many variations on these same ideas. For example, we could use 
the L, norm and minimize something like 

E(c) = C I cx,  - Y ,  I (7-3-5) 
t 

The resulting adaptation would be 
c c c - k x ,  sgn (cx,  - y , )  (7-3-6) 

Equation (7-3-5) is of course the weighted median. An even more robust procedure 
is the uniformly weighted median 

which leads to the adaptation 

c t c - k sgn c - - (7-3-8a) ( ::I 



which is identical to  
c t c - k sgn (x,) sgn (cx, - y,) (7-3-8b) 

The examples (7-3-5) and (7-3-7) could be extended, in a manner like the Burg 
algorithm, to stationary series. Like (7-3-7) we could minimize 

This leads to a choice of c within the proper bounds because 

(all t )  

EXERCISES 

I If x, has physical dimensions of volts, what should be the physical dimensions for 
k ?  If x, has an rms value of 100 V and At, the sampling interval, is 1 ms, what 
numerical value of k will allow the Widrow filter to adapt to new conditions in about 
a second ? 

2 Consider the time series x, = (. . ., I, 1, 1, I, - 4, 1, 1, 1, 1, - 4, 1, 1, 1, 1, -4, . . .). 
Consider self-prediction of the form xt+ = cx,. What are the results of least-squares 
prediction? What are the results of L1 norm prediction of data weighted and 
uniformly weighted types ? 

7-4 DESIGN .OF MULTICHANNEL FILTERS 

Multichannel filters are frequently useful. For example, with a vector-prediction 
filter one might wish to predict a time series, using its past and the past of a group 
of other series. With a matrix-prediction filter one could predict a group of series, 
using the past of the whole group. If the series are related, the group prediction 
should be better than self-prediction of individual channels. For definiteness, let 
us take two time series x, and y, and suppose we are to find a vector filter which 
converts them into a third series d,. If d, is x, + ,, this is a unit time-span prediction 
filter for x,. If d, is a vertical seismogram and x, and y, are horizontals, then the 
two-channel filter might be called an extrapolation filter. The set of equations 
which we wish to solve by least squares takes the form 



If this set of equations is abbreviated 

d z Bf (7-4-2) 

then, as we have seen in an earlier chapter, the solution is of the form 

f = (B~B)- (7-4-3) 

We wish to inspect the matrix being inverted, call it R. For a filter with three time 
lags we get 

If we define 

Y t -  

and likewise for ryx(i) and ryy(i) the matrix (7-4-4) becomes 

We may take the 6 x 6 matrix of (7-4-5) and partition it into a 3 x 3 matrix 
of 2 x 2 submatrices. If we define the submatrix blocks as 

then (7-4-5) in terms of the blocks defined in (7-4-6) is 

The matrix in (7-4-7) is called block Toeplitz or multichannel Toeplitz. As with the 
ordinary Toeplitz matrix there is a trick method of solution. It will be taken up in 
the next section. 

The reader should note that the matrix R does not depend on the desired 
output d. This results in a computational saving when there is more than one 
possible output. An example would be when it is desired to predict several 
different series or distances into the future on a given series. 



EXERCISE 

I In the exercises of Chap. 2, we determined B(Z) and A(Z) such that some given power 
series C(Z) was expressed as C(Z) = B(Z)/A(Z). Write normal equations (do not 
solve them) for doing this in an approximate way by minimizing 

min (A, B) = (B, - 2 C,- ,  AJZ 
t 1 

where 

subject to the constraint A, = 1. (It can be proved that A(Z) comes out minimum- 
phase by examining the Levinson recursion.) 

7-5 LEVINSON RECURSION 

The Levinson recursion is a simplified method for solving normal equations. It  may 
be shown to  be equivalent t o  a recurrence relation in orthogonal polynomial theory. 
The simplification in Levinson's method is possible because the matrix B has 
actually only N different elements when a general matrix could have N2 different 
elements. 

Levinson developed his recursion with single time series in mind (the basic idea 
was presented in Sec. 3-3). It is very little extra trouble to  d o  the recursion for 
multiple time series. Let us begin with the prediction-error normal equation. 
With multiple time series, unlike single time series, the prediction problem is 
changed if time is reversed. We may write both the forward and the backward 
prediction-error normal equations as one equation in the form of (7-5-1). 

Since end effects play an important role, we will show how, when given the 
solution for 3-term filters, d and 99 

to find the solution d' and .@' four-term filters to  

by forming a linear combination of d and a. This can be done by choosing con- 
stant matrices a and p in 
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Make d by choosing a and $ so that the bottom element on the right-hand 
side of (7-5-3) vanishes. That is, a = I, b = - V, E, . Make 3 by choosinga and $ 
so that the top element on the right-hand side vanishes. That is, f3 = I, a = - V, E, . 

Of course, one will want to solve more than just the prediction-error problem. 
We will also want to go from 3 x 3 to 4 x 4 in the solution of the filter problem 
with arbitrary right-hand side 9. This is accomplished by choosing y in the fol- 
lowing construction (7-5-4) so that Ef + V,y = G, 

7-6 CONSTRAINED FILTERS 

A common geophysical situation is a plane wave (signal) incident on a group of 
receivers. One expects to see the same waveform at each receiver. However, there 
is corrupting noise present at each receiver, and the noise may or may not be 
coherent from one receiver to the next. In fact, we may suppose there is so much 
noise on each receiver that the signal might not be detectable at all if there were 
only one receiver. This was the situation facing M. J. Levin [Ref. 291 when he was 
trying to detect weak underground nuclear explosions with an array of seismo- 
meters. He suggested a multichannel filter with constraints. First suppose that 
either all the signals arrive at  the same time or that, if the times differ, at least they 
are known so that the data channels may be shifted into alignment. Now the prob- 
lem is to filter each channel and then add up the channels; the noise should be 
rejected but the signal shape should be maintained. Let f,(j) represent the filter 
weight on the ith channel at the jth lag. For illustration, consider two channels and 
three time lags. Then Levin's constraints which prevent signal distortion are 

1 =f1(0) +f2(0) 

0 = f I (U +f2(1) (7-6-1) 

0 =f1(2) +f2(2) 

That this does not cause signal distortion follows, since if the same signal s(Z) 
comes into each channel, the output is merely s(Z)[ fl(Z) + f2(Z)]. But fl + f2 is just 
(1, 0, 0) in this case or a delta function in general. We call the equation set (7-6-1) 
constraint equations because there are fewer equations than unknowns. The con- 
straint equations may be written in usual form as 



which we may abbreviate as Gf = 0. If we use the method of least squares to 
minimize the total energy in the filter output, we will be attempting to suppress 
both signal and noise. But the constraint equations prevent the suppression of 
signal; hence only the noise is attenuated. If we let R denote the spectral matrix 
of the input data, then the filter f is determined by solving equations like 

We have solved equations of this type in preceding sections. 

EXERCISES 

I In one application, where the channel amplifications were not well controlled, the 
lead terms of the filter were fi(0) = 100 and f2(0) = - 99. Although this filter satisfied 
all that it was designed for, it was deemed inappropriate because the assumption of 
identical signals on each channel was a reasonable approximation but not exactly 
true. Can you suggest a more suitable constraint matrix? 

2 Consider three seismometers in a row on the surface of the earth. The constraints 
considered so far have implied that all signals arrive at the same time, i.e., vertically 
incident waves. Define a constraint matrix to pass both the vertically incident wave 
and the wave which causes xl(t) = x2(t + 1) = x3(t + 2). What is the shortest filter 
which can both satisfy the constraints and still have some possibility of rejecting noise? 

3 Consider a Levin filter on m channels with filters containing k lags. What is the size 
of the matrix in (7-6-3)? 



LAYERS REVEALED BY SCATTERED WAVE 
FILTERING 

Waves occur in almost all branches of physics. We are going to study waves, but 
here we will not assume knowledge of physics and differential equations. We will 
use only assumptions about the general principles of delay, continuity, and energy 
conservation. The results will be directly applicable to sound waves, water waves, 
light in thin films, normal incident elastic waves of both pressure and shear type, 
electromagnetic waves, transmission lines, electrical ladder networks, and other 
such things. The methods can also be applied to diffusion problems. Our first 
main objective is to solve the problem of calculating wave fields given reflection 
coefficients. Our second main objective is to gain the ability to calculate the 
reflection coefficients given the observed waves. 

8-1 REFLECTION AND TRANSMISSION COEFFICIENTS 

Consider two halfspaces (the sky above, the earth below). If a wave of unit ampli- 
tude is incident onto the boundary, there will be a transmitted wave of amplitude t 
and a reflected wave of amplitude c as depicted in Fig. 8-1. 



FIGURE 8-1 y2 

Waves incident, reflected c, and trans- 
mitted t at an interface. 

A very simple relationship exists between t and c. The wave amplitudes have 
a physical meaning of something like pressure, material displacement, or tangential 
electric.or magnetic fields; and these physical variables must be the same on either 
side of the boundary. Thus, we must have 

It may be surprising that t may be greater than unity. However, this phenomenon 
may easily be seen at the ocean, where waves get larger as they approach the shore 
(until they break). Energy is not determined by wave height alone. Energy is equal 
to the squared wave amplitude multiplied by a proportionality factor Y depending 
upon the medium in which the wave is measured. If we denote the factor of the 
top medium by Yl and the bottom by Y2, then the statement that the energy before 
incidence equals the energy after incidence is 

solving for c we get 

In acoustics the up- and downgoing wave variables may be normalized to either 
pressure or velocity. When they measure velocity, the scale factor multiplying 
velocity squared is called the impedance I. When they measure pressure, the scale 
factor is called the admittance Y. 

The wave c' which reflects when energy is incident from the other side is 
obtained from (8-1-4) if Yl and Y2 are interchanged. Thus 
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A perfectly reflecting interface is one which does not allow energy through. 
This comes about not only when t = 0 or c = - 1, but also when t = 2 or c = + 1. 
To see this, note that on the left in Fig. 8-1 

Energy transmitted Yl t - --- 
Energy incident Y21 Y2 YI + y2 

Equation (8-1-6) says that 100 percent of the incident energy is transmitted when 
Y, = Y2, but 'the percentage of transmission is very small when Y, and Y2 are 
very different. 

A word of caution: Occasionally special applications are described by authors 
who do not define reflection and transmission coefficients in terms of some variable 
which is continuous at a boundary. This is usually an oversight which unfortu- 
nately obscures the relationship of the special application to  wave theory in general 
and this chapter in particular. It is almost never an essential feature of the special 
application that t # 1 + c but just a result of an unwise choice of variables in the 
description. For example, material density is an unwise variable in acoustics 
because it suffers a discontinuity at a material boundary. Pressure or normal 
velocity are better descriptors of wave strength. 

Ordinarily there are two kinds of variables used to describe waves, and both 
of these can be continuous at a material discontinuity. One is a scalar like pressure, 
tension, voltage, potential, stress, or temperature. The other is a vector of which 
we use the vertical component. Examples of the latter are velocity, stretch, electric 
current, displacement, and heat flow. Occasionally a wave variable will be a tensor. 
When a boundary condition is the vanishing of one of the motion components, 
then the boundary is often said to be rigid. When it is the pressure or potential 
which vanishes, then the boundary is often said to be free. Rigid and free bound- 
aries reflect waves with unit magnitude reflection coefficients. 

The purpose of this chapter is to establish fundamental mathematical prop- 
erties of waves in layers and to  avoid specialization to any particular physical type 
of waves. That will be done in the next chapter. However, so as not to disguise 
the physical aspect of the mathematics, a precise definition of upgoing wave U and 
downgoing wave D will now be given in terms of classical acoustics. In acoustics 
one deals with pressure P and vertical component of parcel velocity W (not to be 
confused with wave velocity 0). One possible definition for U and D (which will 
be developed in Chap. 9, Sec. 3) is 



FIGURE 8-2 
A waveform R(Z) reflecting at the surface of the sea. Pressure equal to U+ D 
vanishes at the surface. The vertical velocity of the surface is proportional to 
D - U. Theoretically, waves are observed by measuring W at the surface; how- 
ever, as a practical matter P is often observed a fraction of a wavelength below the 
surface. 

with the inverse relations 

Other definitions with different scale factors and signs are possible. With this 
definition, the relation t = 1 + c is readily seen to be associated with (8-1-8a) and 
continuity of pressure at  an interface. The minus signs in (8-1-7) and (8-1-8) are 
associated with the direction of the z axis. Reversal of the z axis changes W to 
- W and switches the roles of U and D. 

We notice that a downgoing wave D all by itself with U vanishing provides 
a moving disturbance of both pressure P and velocity W, and the vanishing of U 
assures us that the ratio between the two WIP = Y is the characteristic admittance 
Y of the material. The energy, we have said, is proportional to either Y P ~  or IW2 
from which the ratio W/P = Y allows us to deduce that the impedance of a material 
is the inverse of its admittance I = 1/Y. 

For sound waves in the ocean the sea surface is a nearly perfect reflector 
because of the great contrast between air and wate~ .  If this interface is idealized 
to a perfect reflector, then it is a free surface. Since the pressure vanishes on a free 
surface, we have that D = - U at the surface so the reflection coefficient is - 1. 
If a wave is to be seen at the surface, it is necessary to  measure not pressure but 
something proportional to velocity. In geophysical exploration practice, pressure- 
sensing hydrophones are used. They must be kept a t  a suitable distance below the 
sea surface. The situation can be depicted as in Fig. 8-2. The pressure normally 

FIGURE 8-3 
An initial downgoing disturbance 1 results in a later upgoing reflected wave 
- R(Z) which reflects back down as R(Z). The pressure at the surface is D + U = 
1+R-R=1. 



vanishes a t  the sea surface, but if we wish to  initiate an impulsive disturbance, 
the pressure may momentarily take on some other value, say 1. This is depicted 
in Fig. 8-3. The total vertical component of velocity of the sea surface due to the 
source and to the resulting acoustic wave is D - U = 1 + 2R(Z). 

EXERCISES 

I Compute t in terms of Yl and Yz . 
2 In a certain application continuity is expressed by saying that D - U is the same on 

either side of the interface. This implies that t = 1 - c.  Derive an equation like 
(8-1-4) for the reflection coefficient in terms of the admittance Y. 

3 What are reflection and transmission coefficients in terms of the impedance I? (Clear 
fractions from your result.) 

4 From the principle of energy conservation we showed that c' = -c .  It may also be 
deduced from time reversal. To do this, copy Fig. 8-1 with arrows reversed. Scale 
and linearly superpose various figures in an attempt to create a situation where a 
figure like the right-hand side of Fig. 8-1 has -c' for the reflected wave. (HINT: Draw 
arrows at normal incidence.) 

8-2 ENERGY FLUX IN LAYERED MEDIA 

First consider wave resonance in a layer. Let the travel time through the layer and 
back again be given by the delay operator 2. The situation is shown in Fig. 8-4. 
The wave seen above the layer has the form 

It is no accident that the infinite series may be summed. We will soon see that for 
n layers the waves, which are of infinite duration, may be expressed as simple 
polynomials of degree n. We will consider many layers and the general problem 

FIGURE 8-4 
Some rays corresponding to resonance in a layer. 
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FIGURE 8-5 
Waves incident and reflected from an 
interface. 

of determining waves given reflection coefficients and determining reflection co- 
efficients given waves. 

The reflection and transmission coefficients show one how to calculate the 
waves resulting from a wave impinging on a layer. Equation (8-2-1) relates to 
Fig. 8-5 and shows how from the waves U and D' one extrapolates into the future 
to get U' and D. 

Let us rearrange (8-2-1) to  get U' and D' on the right and U and D on the 
left. Then we will have an equation which extrapolates from the primed medium 
to the unprimed medium. We get 

which may be arranged in the matrix form 

Now premultiplying by the inverse of the left-hand matrix 

finally getting the result, an equation to extrapolate from the primed medium to the 
unprimed medium. 

Now let us consider the Goupillaud type [Ref. 301 layered medium shown in 
Fig. 8-6. For this arrangement of layers, (8-2-2) may be written 
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FIGURE 8-6 
Goupillaud-type layered medium (layers ,, ?u; $0; 
have equal travel time). U3 JD3 

Let Z =,eimT where T, the two-way travel time, equals the data sampling 
interval. Clearly, multiplication by JZ is equivalent to delaying a function by 
T/2, the travel time across a layer. This gives in the kth layer a relation between 
primed and unprimed waves. 

Inserting (8-2-3) into (8-2-2) we get a layer matrix 

If there is energy flowing through a stack of layers, there must be the same 
total flow through the kth layer as through the (k + 1)st layer. Otherwise, there is 
an energy sink or source at  the layer boundary. The net upward flow of energy 
(energy flux) at  any frequency o in the kth layer is given by 

To establish that this is indeed independent of k, we take the Hermitian conjugate 
(transpose and conjugate with respect to real o )  of (8-2-4). 



Now combine (8-2-4) with (8-2-6) in the form 

Since (I - ck2)/tk2- = t;/tk - Yk/Yk+ this may be rewritten as the desired result, 
namely 

Equation (8-2-8) says that at each frequency co the energy flowing through the kth 
layer equals the energy flowing through the (k + 1)st layer. 

This energy flux theorem leads quickly to some sweeping statements about 
the waveforms scattered from layered structures. Figure 8-7 shows the basic 
geometry of reflection seismology. Applying the energy flux theorem to this geo- 
metry we may say that the energy flux in the top layer equals that in the lower 
halfspace so 

This very remarkable result says that if we were to observe the escaping wave E(Z), 
we could by autocorrelation construct the waveform seen at  the surface. We will 
later see that E(Z] is minimum-phase so that E could be constructed from R by 
spectral factorization. 

FIGURE 8-7 
Basic reflection seismology geometry. 
The man initiates an impulse going 
downward. The earth sends back - R(Z) 
to the surface. Since the surface is per- 
fectly reflective, the surface sends R(Z) 
back into the earth. Escaping from the 
bottom of the layers is a wave E(Z) 
which is heading toward the other side 
of the earth. 
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FIGURE 8-8 
Earthquake seismology geometry. An impluse 1 is incident from below. The 
waveform X(Z) is incident upon the free surface and is reflected back down. The 
waveform P(Z) scatters back into the earth. 

Now let us turn our attention to the earthquake seismology geometry 
depicted in Fig. 8-8. Applying the energy flux theorem to this geometry we obtain 

The interpretation of the result is that the backscattered waveform P(Z) has the 
form of an all-pass filter. This result may have been anticipated on physical grounds 
since all the energy which is incident is ultimately reflected without attenuation; 
thus the only thing which can happen is that there will be frequency-dependent 
delay. 

Finally, we will derive a theorem which relates energy flux to impedance and 
admittance functions (these functions have Fourier transforms with a positive real 
part). Suppose that a downgoing wave D(Z) is stronger than an upgoing wave 
U(Z) at all frequencies, i.e. 

(Note that this does not imply I d, 1 > I u, I .) We will abbreviate (8-2-1 1) by 

From (8-2-11) or (8-2-12) we will deduce that ( D  - U)/(D + U) has a Fourier 
transform with a positive real part. We have 

- - 
2(DD - OU) 

(D + U ) ( D  + D) 



The numerator of (8-2-13) is positive by hypothesis (8-2-12) and the de- 
nominator of (8-2-13) is positive, since it is the spectrum of the time function 
d, + u, and any spectrum is always positive. Thus (D - U)/(D + U) is called 
" positive real." The acoustical interpretation of ( D  - U)/(D + U )  is that (D - U) 
represents the vertical component of material velocity and (D + U) represents the 
material pressure. 

8-3 GETTING THE WAVES FROM THE REFLECTION 
COEFFICIENTS 

A layered material may be specified by giving the reflection coefficient at each 
interface. Alternate descriptions are to give any one of the scattered waves R(Z), 
E(Z), X(Z), or P(Z). Our ultimate objective is to get such a good grip on the algebra 
of this kind of problem that we will be able to  start with any descriptor of the layers 
and from it deduce all the other descriptors. 

An important result of the last section was the development of a "layer 
matrix " (8-2-4) that is, a matrix which can be used to extrapolate waves observed 
in one layer to the waves observed in the next layer. This process may be continued 
indefinitely. To see how to extrapolate from layer 1 to layer 3 substitute (8-2-4) 
with k = 1 into (8-2-4) with k = 2, obtaining 

Inspection of this example suggests the general form for a product of k layer 
matrices 

1 

Now let us verify that (8-3-2) is indeed the general form. We assume (8-3-2) is 
correct for k - 1 ; then we multiply (8-3-2) by another layer matrix and see if the 
product retains the same form with k - 1 increased to k. The product is 
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By inspecting the product we see that the scaling factor is of the same form with 
k - 1 changed to k. Also the 22 matrix element can be obtained from the 11 element 
by replacing Z with 1/Z and nlultiplying by Zk. Likewise, the 21 element is obtained 
from the 12 element; thus (8-3-2) does indeed represent a general form. The poly- 
nomials F(Z) and G(Z) of order k are built up in the following way [from the first 
column of the right-hand side of (8-3-3)]: 

By inspecting (8-3-4) we can see some of the details of F and G. From (8-3-4a) 
we see that the lead coefficient fo of F(Z) does not change with k. It is always 
(f,), = 1. Knowing this from (8-3-46) we see that (g,), = ck . Also with knowledge 
that F(Z) and G ( Z )  are of the same degree in Z, we see that (8-3-4b) implies that 
the highest coefficient of G(Z), say (g,), does not change with k and therefore it 
equals the starting value of c,. Finally, with this knowledge and (8-3-4a) we deduce 
that the highest coefficient in F(Z) will always be clck. Thus, in summary 

It may be noted in (8-3-5) and proved from the recurrence relations (8-3-4) that 
the coefficients of F contain even powers of c and that G contains odd powers of c. 
This means that if all c change sign, G will change sign but F is unchanged. 

The polynomials F(Z) and G ( Z )  are not independent and a surprising energy- 
flux-like relationship exists between them. By substitution from (8-3-4) one may 
directly verify that 

Since Fl(Z) = 1 and G1(Z) = c, we have by iterative application of (8-3-6) that 

k k 

(1 - ck2) = fl t't (8-3-7) 
1 

Equation (8-3-7) is a surprising equation because on the left-hand side we have two 
spectra, the spectrum o f f ,  and the spectrum of g , ,  but the right-hand side is a 
positive, frequency-independent constant. Since the spectrum of f ,  is thus greater 
than the spectrum of g , ,  we may apply the theorem of adding garbage to a mini- 
mum-phase wavelet to deduce from (8-3-4a) and from knowledge that I ck I < 1 that 
Fk(Z) is minimum-phase if Fk- ,(Z) is minimum-phase. Since F,(Z) = 1 is minimum- 
phase, we see that all Fk(Z) are minimum-phase. Since F(Z) is minimum-phase, 
then F(Z) may be calculated from its spectrum F(Z)F(l/Z) or the spectrum of g, 
(along with the single number nt ' t ) .  However, we cannot get G from F. Before 
continuing our algebraic discussion we take up an example. 



k 
Layer c2 

matrices 

FIGURE 8-9 
Waves incident, reflected, and transmitted from a stack of layers between two 
half-spaces. 

Let a stack of layers be sandwiched in between two halfspaces (Fig. 8-9). 
An impulse is incident from below. The backscattered wave is called C(Z) and 
the transmitted wave is called T(Z). 

Mathematically, we describe the situation with the equations 

We may solve the first of (8-3-8) for the transmitted wave T(Z) 

and introduce the result back into the second of (8-3-8) to obtain the backscattered 
wave 

The mathematical fact that F(Z) is minimum-phase corresponds to the physical 
fact that the C(Z) and T(Z) have finite energy; therefore the denominators of 
(8-3-9) and (8-3-10) cannot have zeros inside the unit circle. Since we know that 
the backscattered wave C(Z) contains less energy than the incident wave by reference 
to (8-2-13) we know that a positive real function is given by 



Now let us see how to reconstruct the reflection coefficients c,i from the observed 
scattered wave C(Z). Referring to Fig. 8-9 we have 

The first coefficient of C(Z) is c, [this is physically obvious but may also be seen 
from (8-3-5)]. Thus the layer matrix in (8-3-12) is known. Multiplying (8-3-12) 
through by the inverse of the layer matrix we will have obtained U,-,(Z) and 
D,- ,(Z). The next reflection coefficient c,-, is obviously d,/u,. Thus we may 
proceed until all the c, are determined. 

Next let us reconsider the reflection seismology geometry. We have 

From the first equation we may solve for R(Z) 

The denominator occurs so often that we give it the name A ( Z )  

A(Z), like F(Z), is minimum-phase. The second of (8-3-13) gives the escaping 
wave as 

simplifying with (8-3-7) we get 

The positive real function is 

D - U  1 + R - ( - R )  
-- 
D + U -  

= 1 + 2R(Z) (8-3-17) 
l + R - R  

- Vertical velocity = 1 + 2R. 
Pressure = 1 



As mentioned earlier, if the equations are interpreted in terms of acoustics, then 
Y(D - U ) / ( D  + U )  is interpreted as vertical velocity divided by pressure. It is 
called the admittance which is the inverse of the impedance. 

We have now completed the task of solving for the waves given the reflection 
coefficients. In the subsequent section we attack the inverse problems of getting 
the reflection coefficients from knowledge of various waves. 

EXERCISES 

I In Fig. 8-9 let cl = fr, cz = -*, and c3 = b .  What are the polynomial ratios T(Z) and 
C(Z) ? 

2 For a simple interface, we had the simple relations t = 1 + c, t' = 1 + c', and c = -c'. 
What sort of analogous relations can you find for the generalized interface of Fig. 8-9? 
[For example, show 1 - T(Z)T'(I/Z) = C(Z)C(l/Z) which is analogous to 1 - tt' = cZ.] 

3 Show that T(Z) and Tr(Z) are the same waveforms within a scale factor. Deduce that 
many different stacks of layers may have the same T(Z). 

4 Let an impulse be incident on a stack of layers and let a wave C(Z) be reflected. What 
is the reflection coefficient at the first layer encountered? What would be the reflected 
wave as a function of C for a situation which differs from the above by the removal of 
the first reflector? 

5 Consider the earth to be modeled by layers over a halfspace. Let an impulse be incident 
from below (Fig. E8-3-5). Given F(Z) and G(Z), elements of the product of the layer 

FIGURE E8-3-5 

matrices, solve for X and for P. Check your answer by showing that P(z)P(I/Z) = 1. 
How is X related to E? This relation illustrates the principle of reciprocity which 
says source and receiver may be interchanged. 

6 Show that 1 + R(l/Z) + R(Z) = (scale factor) X(Z) X(l/Z), which shows that one 
may autocorrelate the transmission seismogram to get the reflection seismogram. 

7 Refer to Fig. E8-3-7. Calculate R' from R. 

FIGURE E8-3-7 



8-4 GETTING THE REFLECTION COEFFICIENTS FROM THE 
WAVES 

The best starting point for inverse problems is the Kunetz equation [Ref. 311 
(8-2-9). 

We need also the expression for the escaping wave (8-3-16) 
.- 

We also need to recall that Y,/ Y, = ntlt '. With this (8-4- 1) becomes 

Multiplying through by A(Z) we get 

Since A(Z) is minimum-phase, A(Z) may be written as l/B(Z) or A(1IZ) = 
l/B(l/Z). Thus (8-4-4) becomes 

[I + R(Z) + R(I/Z)]A(Z) = (I3 t ' t )  ) (8-4-5) 

, t 

Identifying coefficients of zero and positive powers of Z as simultaneous equations, i 

we get a set of equations which for a three-layer model looks like (ro = 1). 

In (8-4-6) we see our old friend the Toeplitz matrix. It used to work for 
factoring spectra and predicting time series. Notice that - c 3  has been inserted in 
(8-4-6) as the highest coefficient of A(Z). This is justified by reference back to the 
definition of A(Z) in terms of F(Z) and G(Z) which were in turn defined from the c, . 
It is by reexamining the Toeplitz simultaneous equations (8-4-6) and the Levinson 
method of solution (3-3-10) that we will learn how to compute the reflection co- 
efficients from the waves. 

The first four equations in (8-4-6) would normally be thought of as follows: 
Given the first three reflected pulses r,, r, , and r, we may solve the equations for A, 
incidentally getting the reflection coefficient c3 . Knowing A, the 5th equation in 
(8-4-6) may be used to compute r 4 .  If the model were truly a three-layer model, 



it would come out right; if not, the discrepancy would be indicative of another 
reflector c, which could be found by expanding equation (8-4-6) from 4th order 
to 5th order. In summary, given the reflected pulses r , ,  the Levinson recursion 
successively turns out the reflection coefficients c,. 

Now suppose we begin by observation of the escaping wave E(Z). One way 
to  determine the reflection coefficients would be to form 1 + R(Z) + R(l/Z) by the 
autocorrelation of E(Z); then, the Levinson recursion could be used to solve for the 
reflection coefficients. The only disadvantage of this method is that E(Z) contains 
an infinite number of coefficients so that in practice some truncation must be done. 
The truncation is avoided by an alternative method. Given E(Z) polynomial 
division will find A(Z). The heart of the Levinson recursion is the building up of 
A(Z) by A,(Z) = Ak-l(Z) - c , z ~ A ~ -  ,(I/z). In particular, from (3-3-12) we have 

which shows how to get A,(Z) from A2(Z) and c, . To do it backwards, we see first 
that c, is -a3 .  Then write (8-4-7) upside-down 

Next multiply (8-4-7) by 1/(1 - c , ~ )  and add the product to (8-4-8) multiplied by 
c,/(l - c ,~ ) .  Notice that the upside-down vectors on the right-hand side cancel, 
leaving 

Equation (8-4-9) is the desired result which shows how to reduce A, ,  ,(Z) to ,4,(Z) 
while learning c,, ,. A program to continue this process is given in Fig. 8-10. An 
inverse program to get R and A from c is in Fig. 8-1 1. 

COMPLEX A,C,AL,BE,TOP,CONJG 
C(l)=-1.; R(l)=l.; A(l)=l.; V(l)=l. 

300 DO 310 I=l,N 
310 C (I)=A(I) 

DO 330 K=l,N 
J=N-K+2 
AL=~./(I.-C(J)*CONJG(C(J))) 
BE=C (J) *AL 

FIGURE 8-10 
A program to compute reflection co- TOP=AL*C (1)-BE*CONJG (c (J-1-1-1) 1 
eficients c, from the predictionerror C(J-I+l)=ALkC (J-I+~)-BE*coNJG(C ( I ) )  
filter A(Z). The complex arithmetic is 320 C(I)=TOP 

optional. 330 c (J)=-BE/AL 



(XXE'LEX C,R,A,BOT,CONJG 
c(l)=-1.; R(l)=l.; A(l)=l.; V(l)=l. 

100 DO 120 J=2,N 
A(J)=O. 
R(J)=C(J)*V(J-1) 
v(J)=v(J-l>*(l.-C(J)*CONJG(C(J))) 
DO 110 I=2,J 

110 R(J)=R(J)-A(I>*R(J-1+1) 
JH= (J+l) /2 

FIGURE 8-1 1 DO 120 I=l,JH 
A program inverse to the program of BOT=A(J-I+1) -C (J)*coNJG (A (I) ) 
Fig. 8-10. It computes both R and A A(I)=A(I)-C(J)*CONJG(A(J-1+1)) 
from C .  120 A(J-I+l)=BOT 

Finally, let ,us see how to do a problem where there are random sources. 
Figure 8-12 shows the "earthquake geometry." However, in order to introduce a 
statistical element, the pulse incident from below has been convolved with a white- 
light series w,  of random numbers. Consequently, all the waves internal to Fig. 
8-12 are given by the convolution of w,  with the corresponding wave in the impulse- 
incident model. Now suppose we are given the top-layer waves D = - U = X W 
and wish to consider downward continuation. We have the layer matrix 

which can be re-written as 

The Burg prediction-error scheme can be written in the form 

which makes it equivalent within a scale factor to downward continuing surface 
waveforms. The remaining question is whether B~~rg ' s  estimate of the reflection 
coefficient, namely, 

FIGURE 8-12 

white light incident from below. In the 

R 
Earthquake seismogram geometry with -XW/ vw 
top layer, the sum of the waves vanishes 
representing zero pressure at the free 
surface. The difference of up- and down- 
going waves is the observed vertical 
component of velocity. Y' 
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turns out to estimate the reflection coefficient ck in the physical model. To see how 
Burg's tk is related to the ck arising in the Levinson recursion, we define f + and f - 
for k = 2 as 

[. +] = [ '  1 :$,I and [. -1 = [ :  i. :] [ill (8-4-14) 

x2 x2 

Next form the dot product 

Now utilize the fact that (I, a,) satisfies the 2 x 2 system. Following the Levinson 
recursion (8-4-15) can be written as 

Likewise we can deduce that f + - f + = f - . f - = u. Thus, the Levinson calcula- 
tion of the reflection coefficient can be written as 

The Burg treatment differs from the Levinson treatment in that Burg omits end- 
effect terms on (8-4-14). Instead of (8-4-14) he has 

For a sufficiently long data sequence the Burg method and the Levinson technique 
thus become indistinguishable. For a data sample of finite duration we must make 
a choice. The Levinson technique with (8-4-14) is equivalent to assuming the data 
sample vanishes off the ends of the interval in which it is observed. In most appli- 
cations this is untrue, and so the Burg technique is usually preferable. 
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EXERCISES 

1 An impulse and the first part of a reflection seismogram, that is, 1 f 2R(Z) is 
1 + 2(2/4 + Z2/16 + Z3/4 + . . .). What are the fist three reflection coefficients? 
Assuming there are no more reflectors what is the next point in the reflection seis- 
mogram? 

2 A seismogram X(Z) = 1/(1 - .1Z + .9Z2) is observed at the surface of some layers 
over a halfspace. Sketch the time function and indicate its resonance frequency and 
decay time. Find the reflection coefficients if X(Z) is due to an impulsive source of 
unknown magnitude in the halfspace below the layers. 

3 A source bo + blZ deep in the halfspace produces a seismogram B(Z)X(Z) = 1 - Z + 
Z2/2 - Z3/2 4- Z4/4 - Z5/4 + Z6/8 - Z7/8 -t . -  . What are the layered structure and 
the source time function ? 



MATHEMATICAL PHYSICS 
IN STRATIFIED MEDIA 

In stratified media there are many common mathematical aspects in phenomena 
so physically diverse as acoustics, electromagnetic waves, magnetostatics, gravi- 
tational-elastic spherical resonance, heat flow, gas diffusion, electric current in a 
resistive material, seismic waves, water waves, and atmospheric gravity waves, 
among many others. We will present the general theory and work out some of the 
details for the case of simple acoustics. 

By a stratified medium we mean one in which material properties, compress- 
ibility, conductivity, density, etc., are functions of one spatial coordinate only. 
The usual situation is cartesian coordinates, but when geophysics is done on a 
global scale spherical coordinates may be used. 

9-1 FROM PHYSICS TO MATHEMATICS 

First step: 
The first step is to write down all the basic partial differential equations of classical 
physics which relate to the problem of interest. Do not write down equations con- 
taini~lg second space derivatives which are derived from first-derivative equations. 



Write down the first-derivative equations. Write each component of vector or 
matrix equations. 

In acoustics we have that the gradient pressure p gives rise to an acceleration 
of mass density p. For convenience we restrict motion to the x, z plane. Letting 
u and w represent x and z components of velocity we have 

Another equation which is important in acoustics is the one that states that the 
divergence of velocity multiplied by the incompressibility K yields the rate of 
pressure decrease. 

In (9-1-3) we included a pressure source s. This is something to be externally pre- 
scribed. The quantity s may be a source of chemical energy such as an explosion; 
thus it may vanish everywhere except at  a point. Distributed sources are also often 
of interest; for example, radioactive rocks in a heat-flow model of the earth. To 
be more general, we could also have put momentum sources into (9-1-1) or (9-1-2), 
but the basic principles will be adequately exemplified with a source only in (9-1 -3). 

Second step: 
The wave disturbance variables are taken to be unknown and the material prop- 
erties known. Count equations and unknowns. We have three equations; u, 
kt1, a n d p  are the three unknowns. We take K, p, and s to be known. Notice that 
the equations are linear in the unknowns. Now we make the stratification 
assumption; that is, we assume K and p are functions of depth z only and that 
they are constant in x. Since our linear equations now have constant coefficients 
with respect to x and t, we may always expect sinusoidal solutions in x and t. 
We do not know what to expect of our solutions in the z coordinate because of the 
arbitrary z-dependence of the coefficients K and p. This leads us to step three. 

Third step: 
Fourier transform time and the space coordinates with constant coefficients. 
In other words, we make the following substitution into (9-1-I), (9-1-2), and 
(9- 1-3) 



After substitution, cancel the exponential and obtain 

- icop(z)C7 = - ikxP 

Fourth step: 
Eliminate algebraically the algebraic unknowns. In other words, when you 
examine (9-1-5) you' see terms in aPlaz and a Wlaz but you do not see aU/az. 
This means that U is an algebraic variable which can be eliminated by purely 
algebraic means. We do this by substituting (9-1-5a) into (9-1-5c). 

Fifth step: 
Bring 8/32 terms to the left, bring ali others to the right, and arrange terms into 
a neat matrix form. We have 

a p  
- = iop W az 

and then 

Sixth step: 
Recognize that, no matter the physical problem with which you started, you 
should have a matrix first-order differential equation of the form 

where x is a vector containing the field variables of interest, A is a matrix depending 
on temporal and spatial frequency and on material properties, and s is a (possibly 
absent) vector function of the sources. 

Before we look into techniques of solving (9-1-7) we can immediately deduce 
that in a source-free region the field variables x are smoother functions than the 
material properties. To see this, consider two homogeneous layers in contact. At 
the contact the A matrix has step-function discontinuities. Now let us see whether 
the wave fields in x can have step-function discontinuities. Obviously they cannot, 
since a step discontinuity in x would imply dxldz = oo, whereas (9-1-7) in a 
source-free region states that dxldz = Ax and both A and x are supposed finite. 



This does not mean that all field variables are always smooth. The algebraic 
variables eliminated in the fourth step can and often will be discontinuous at  layer 
boundaries. 

EXERCISES 

1 What form does (9-1-7) take for the heat-flow equations? Include radioactive sources. 
[HINT : See equations (10-1-1) and (10-1-2).] 

2 Using Maxwell's equations, V X E = -pH, V X H = J + EE, and Ohm's law, J = aE 
where a is conductivity, set slay = 0 and derive (9-1-7). 

3 In electrostatics the electric field in the ionosphere may be derived from a potential 
Vq5 = -E, the divergence of electrical current vanishes V - J = 0 and Ohm's law must 
have an extra term due to wind (a current source due to differential drag on ions and 
electrons across the earth's magnetic field) J = aE + TV. Assume you know V. What 
form does (9-1-7) take assuming a and T to be scalars? Indicate how the calculation 
proceeds if a and 7 are matrices (assume you have the inverse of any matrix you wish). 

4 In magnetostatics curl H = J and div B = 0, and B = pH. Taking J as given, what is 
the form of (9-1-7)? 

5 This exercise illustrates the linearization of nonlinear problems. For acoustic waves 
in a stratified windy atmosphere we use the trial slutions 

Reduce the partial differential equations to a matrix ordinary differential equation. 
HINT: The horizontal acceleration term is 

d~ au au ax au a t  ---+--+-- - 
dt at ax at a t  at 

with a like term for vertical acceleration. Drop second-order terms in p, 0, and @. 
6 Two equations come from heat flow: (H, , Hz) equals the conductivity u multiplied by 

the negative of the temperature gradient (a,, a,)T. The time derivative of temperature 
multiplied by the heat capacity c equals the negative of the heat-flow divergence 
a, H, + a, Hz gives another equation. Insert the trial solutions 

(a) First derive steady-state equations for and W assuming F and fi vanish. 
(b) Assuming and R satisfy part (a), find equations for and if. 
(c) Repeat (a) and (6) assuming linear temperature dependence of heat capacity and 

conductivity, i.e., 
0 = uo(z) + ul(z)T 

You will have to drop squared terms in F and fi. 



7 Consider a compressible liquid sphere pulsating radially under its own gravitational 
attraction. What is the form of (9-1-6)? 

HINTS: pi; = V p  - pg momentum 
,it p V . v = O  mass 

p + K V . v = O  state 

v . g  = 47ryp gravity 

9-2 NUMERICAL MATRIZANTS 

A differential equation relates field variables at a point to field variables at  neigh- 
boring points. A matrizant relates field variables at  one depth in a stratified 
material to variables at some other depth. A matrizant may also be regarded as 
the integral of the matrix differential equation (9-1-7). First we will show how to 
get the matrizant of (9-1-7) by numerical means. That is, we will solve the problem 
for arbitrary depth variations in density and in compressibility. Then we will 
come back and develop analytical solutions for the special case of constant material 
properties. We have 

Given X for some particular z it is clear that (9-2-1) may be used recursively to get 
X for any z. For simplicity we may take Az = 1 and use subscripts to indicate the 
z coordinate. Let [I + A(z) Az] be denoted by Q(z) ,  then (9-2-1) becomes 

hence 

hence 

likewise 



So we have in general a numerically determinable matrix M (called the matrizant) 
and a vector T which relates the field variables at  the top of the strata to those on 
the bottom by 

The matrix M is also called an integral matrix. Physical problems present them- 
selves in different ways with different boundary conditions. For the acoustic 
problem discussed earlier X is a two-component vector involving pressure and 
vertical displacement. These are initially unknown at both the top and the bottom 
of the stratified medium. Thus (9-2-3) represents two equations for four unknowns. 
The solution to the problem comes only when two boundary conditions are intro- 
duced. If we are talking about sound waves in the ocean, (simplified) boundary 
conditions would be to prescribe zero pressure at the surface and zero vertical 
displacement at the sea floor. Then these boundary conditions with (9-2-3) would 
be two equations and two unknowns and consequently could be solved for surface 
displacement and bottom pressure. From these, pressure and displacement could 
be determined everywhere. Proper determination of boundary conditions is often 
the trickiest part of a problem; we will return to it for some other problems in a 
later section. 

If portions of the material have constant material properties and contain no 
sources, then it is possible to find an analytical expression for the matrizant. A 
matrizant which takes one across such a layer of constant properties is called, 
appropriately enough, a layer matrix. It may be verified by substitution that 

is the solution to (d/dz)X = AX where 

in a region of space where A is constant with z. Thus, eA('-'O) is the required 
matrizant. The matrix exponential could be computed numerically either by the 
method of (9-2-2) or the method of (9-2-5) or the method of Sylvester's theorem 
described in Chap. 5. In the next section we will see how Sylvester's theorem leads 
directly to the ideas of up- and downgoing waves. 

EXERCISE 

I What is Qk for the improved central difference approximation? 

X(z $ Az) - X(z) = 
AzA[X(z + Az) + X(z)] 

2 



9-3 UP- AND DOWNGOING WAVES 

We have seen a host of examples of how physical problems in stratified source-free 
media reduce to the form 

Where X is a vector of physical variables and A is a matrix which depends on z if 
material properties depend upon z. An important set of new variables in the vector 
V is defined by multiplying the vector of physical variables X by a square matrix R 

where R is the matrix of row eigenvectors of the matrix A. Inverse to R is the 
matrix C of column eigenvectors of A. Premultiplying (9-3-2) by C and using 
CR = I we get the inverse relation to (9-3-2) which is useful to find the physical 
variables X from the new variables V. 

Inserting (9-3-3) into (9-3-1) we obtain 

(CV), = ACV 

CV, = ACV - C,V 

Premultiplying by R and using RC = I we obtain 

VZ = (RAC)V - RC,V (9-3-4) 

Since we have supposed R and C to be row and column eigenvector matrices of A 
we can replace RAC by the diagonal matrix of eigenvalues A, that is, 

V, = AV - RC,V (9-3-5) 

In any region of physical space where the material is homogeneous then A, hence C, 
will be independeat of z and (9-3-5) will reduce to 

But the only matrix in (9-3-6) is a diagonal matrix, and so the problem for the 
different variables in the vector V decouples into a separate problem for each 
component. In wave problems it will be seen to be appropriate to call the compo- 
nents of V upgoing and downgoing wave variables. These variables flow up and 
down in homogeneous regions without interacting with each other. Let us consider 
an example. 

In Sec. 9-1 we deduced that the matrix first-order differential equation for the 
acoustic problem in a region of no sources takes the form 
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where 

The matrix of column eigenvectors C and the matrix of row eigenvectors 
of the matrix of (9-3-7) are readily verified to  be 

It  is also readily verified that the vectors are normalized, namely RC = CR = I 
and that 

The downgoing wave variable D is associated with the iab eigenvalue and the up- 
coming wave variable U is associated with the - iab. We have definitions for up- 
and downgoing waves as 

Of course a row eigenvector may contain an arbitrary multiplicative scaling 
factor if the scaling factor is divided from the corresponding column eigenvector. 
This means that the definition (9-3-12a) is not unique. As it happens, the present 
scale factors give the up- and downgoing waves the physical dimensions of P. 
The physical variables P and W are found from U and D by the inverse relation 



from which we see that the pressure P is the downgoing wave plus the upcoming 
wave and the vertical velocity is bla times the difference. Equation (9-3-5) governing 
the propagation of U and D is 

In any region of space where bla is not a function of z we are left with the 
simple uncoupled equations 

strictly, to justify the definitions of U and D as up- and downgoing waves we 
will have to be sure that the downgoing solution takes the form 

where w and k,  must agree in sign so that constant phase is maintained as both z 
and t  increase. The opposite sign must apply to U .  In other words k, = ab must 
take the sign of w. To see that this happens we take the square root of the product 
of (9-3-8) and (9-3-9). 

For vertically propagating waves we have k, = 0 so that k, = ab specializes to 
k ,  = co(p/l<)'I2. Substituting this value into (9-3-15), we see that the phase angle 
of the exponential is constant if z/ t  = (~ lp) ' " ,  making it clear that the material's 
intrinsic velocity is given by 

Reference to Fig. 9-1 shows that the angle 8 between the vertical and a ray is 
defined by 

sin 0 = - kxv  (9-3-1 8) 
w 

Inserting (9-3-17) and (9-3-18) into (9-3-16) we obtain 

W 
k,  = ab = - cos 8 (9-3-19) 

U 

The time function (9-3-15) is complex. To get a real time function the ex- 
pression (9-3-15) must be summed or integrated to include both positive and nega- 
tive frequencies. Then, as we saw in the chapters on time series analysis, we must 
have D(w) = D(--w). 



j ~ a y  
FIGURE 9-1 
Rays and wavefronts in a layer. The wavelength A,  seen on the x axis and the 
wavelength hz seen on the z axis are both greater than the wavelength h seen along 
the ray. Clearly, h/h, = sin 6 and h/h, = cos 6 so the spatial frequencies k ,  = 

2n-/h, and kZ = 2i7/hz satisfy k x 2  i- kz2  - ( 2 7 ~ / h ) ~  = u 2 / u 2 ,  which, besides being 
the pythagorean theorem (since sin 6 = k ,  ulw),  is the Fourier transform of the 
wave equation. Snell's law that (sin 6) lv  is the same from layer to layer is thus 
equivalent to  saying that k x / w  is the same in each layer. That the spatial fre- 
quency k ,  is the same constant in each layer is essential to the satisfaction of 
continuity conditions at the layer interfaces. 

The quantity bla will turn out to be the material's characteristic admittance Y. 
Taking the square root of the ratio of (9-3-9) over (9-3-8) we have 

b cos 0 y = - = -  
a ,011 

a pt: I = - = -  
b cos 0 

We shall now verify that this definition of impedance is the same as the one 
in the previous chapter. To do this we take a careful look at the matrizant to cross 
a layer exp[A,(z, - zl)] = exp(AAz). By Sylvester's theorem we have for the 
matrizant 

- ik,  Az 

exp(A Az) = C , + i k ,  O A Z  ]R (9-3-23) 

The matrizant relates the wave variables at the top z ,  of a layer to those at the 
bottom z2 . Thus (9-3-23) enables us to write 

[L] 2 = C, exp (A, Ar)Rl [&I 1 (9-3-24) 



Equation (9-3-24) which seems to have jumped at us from the mysteries of Syl- 
vester's theorem actually has a simple interpretation. Starting on the right, we 
interpret the multiplication of It, into the P and W variables as a conversion to 
up- and downgoing variables. Then the multiplication by exp (A, Az) carries these 
across the layer and the multiplication by C, converts back to P and W variables 
which are continuous crossing an interface. Multiplying (9-3-24) through by R2 
and noting (9-3-1 1) and (9-3-12) we have 

In (9-3-25) we have now defined the up- and downgoing waves just beneath the 
interface as we did in the previous chapter. We should now be able to recognize 
the matrix as having the same form. It is 

Defining the Z transform variable by 

z = exp fs) 
Now we recognize that the travel time across the layer is At = Az/u cos 0. The 
layer matrix (9-3-26) is 

y 2  - YI 

2 - 1 1 2  

zl,2] (9-3-27) 

1 

which may be compared to the matrix of (8-2-4) namely, 

establishing that the definition Y = b/a has led tb the familiar definition of re- 
flection coeEcient 



EXERCISES 

1 Redefine the eigenvectors so that W = D + U and P = (D - U)/ Y. This transform- 
ation would be useful if we wanted t = 1 + c to refer to vertical velocity normalized 
variables instead of pressure variables as in Chap. 8. Deduce changes to all the equa- 
tions of this section. 

2 Write the matrizant which crosses a layer in terms of a, b, and layer thickness h. 

9-4 SOURCE-RECEIVER RECIPROCITY 

The principle of reciprocity states that a source and receiver may (under some con- 
ditions) be interchanged and the same waveform will be observed. This principle 
is often used to advantage in calculations and may also be used to simplify data 
collection. It is somewhat amazing that this principle applies to the earth with its 
complicated inhomogeneities. Intuitively, the main reason for validity of the 
reciprocal principle is that energy propagates equally well along a given ray in 
either direction. Either way, it goes at the same speed with the same attenuation. 
This is true for all common types of waves. 

Little more would need to be said if all waves were scalar phenomena with 
scalar sources and scalar receivers as, for example, acoustic pressure waves with 
explosive sources and pressure-sensitive receivers. The situation becomes more 
complicated when the sources or receivers are moving diaphragms, because then 
their orientations become important. The directional properties of the source and 
receiver are often referred to as radiation patterns. To apply the reciprocity prin- 
ciple it is necessary to regard the radiation patterns as attached to the medium, not 
as being attached to the source and receiver. Thus, when source and receiver are 
said to be interchanged, it is only a scalar magnitude which is interchanged; the 
radiation patterns stay fixed at the same place. These general ideas are made more 
precise in the following derivation. It will be seen that the notion of rays actually 
turns out to be irrelevant. Reciprocity also works in diffusion and potential 
problems. 

Theoretical treatments are often somewhat hard to read. They often begin 
by specifying that the differential operator along with suitable boundary conditions 
should constitute a self-adjoint problem. This means that when you reexpress the 
differential equations in difference form you discover that the matrix of coefficients 
is symmetric. Let us take the example of acoustic waves in one dimension. Newton's 
equation says that mass density p times acceleration a,, u equals the negative of the 
pressure gradient - d x p  plus the external force F, . Utilizing e- '"' time dependence 
we have 

which, defining F = - Fx , may be written 



The other important equation of acoustics says that the incompressibility K-I 
multiplied by the pressure p plus the divergence of displacement a,u equals the 
external (relative) volume injection V, that is 

We will now combine (9-4-1) and (9-4-2) in a finite difference form with, for con- 
venience, Ax = 1. In practice, one might like to use many grid points to approxi- 
mate the behavior of continuous functions, but for the sake of illustration we only 
need use a few grid points. Luckily, in this case reciprocity will be exactly true 
despite the small number of grid points. We have 

P2 

u2 [il 
The first and last rows of (9-4-3) require some special comment. The quantities 
I, and I ,  are called impedances. If they vanish, we have zero pressure end con- 
ditions; if they are infinite, we have zero motion end conditions. 

Now with all this fuss we have gone through to obtain the matrix (9-4-3), 
the only thing we want from it is to observe that the matrix is indeed a symmetric 
matrix (even if p and K-' were functions of x). In the exercises it is shown that a 
symmetric matrix may also be attained in two dimensions. That the matrix is 
symmetric is partly a result of the physical nature of sound and partly a result of 
careful planning on the part of the author. To obtain the correct statement of 
reciprocity in other situations you may have to do some careful planning too. The 
essence of reciprocity is that since the matrix of (9-4-3) is symmetric then the inverse 
matrix will also be symmetric. Premultiplying (9-4-3) through by the inverse 
matrix we get the responses as a result of matrix multiplication on the external 
excitations. 

The letters A, B, C,  and D indicate the symmetry of the matrix of (9-4-4). Now if 
all external sources vanish except on one end where there is a unit strength volume 
source Vo = 1, then according to (9-4-4) the pressure in the middle p,  will equal A. 
If in a second experiment all the external sources vanish except the middle volume 



source V, = 1, then according to (9-4-4) the pressure response po at the end will also 
equal A. This is the reciprocal principle. Note that with the letter D in (9-4-4) a 
like statement applies to the forces and the displacements. A mixed statement 
applies with the letters C and B. 

In a realistic experiment it may not be possible to have a pure volume source 
or a pure external force. In other words, the external source may have some finite, 
nonzero impedance. Then the first experiment we would perform would be with 
the excitation at the middle, getting for the end response : 

Interchanging source and receiver locations, we have 

The notable feature of (9-4-5) and (9-4-6) is that the matrices are transposes of one 
another. This feature would not be lost if we were to consider a more elaborate 
experiment where the vectors in (9-4-5) and (9-4-6) contained more elements. For 
example, a vector in (9-4-5) or (9-4-6) could contain elements of an array of physic- 
ally separated volume sources or pressure sensors. In fact, if the reader is able to 
frame elastic, electromagnetic, diffusion, or potential problems as symmetric 
algebraic equations like (9-4-3), then the matrices like (9-4-5) and (9-4-6) will still 
be transposes of one another. The setting up of symmetric equations like (9-4-3) 
is often not difficult, although it may get somewhat complicated in multidimensional 
noncartesian geometry. 

In such a more general case we may denote the right-hand vectors in (9-4-5) 
or (9-4-6) by E to denote excitation and the left-hand vectors by R to denote re- 
sponse. Using M for the matrix of (9-4-5) and MT for the transposed matrix, 
(9-4-5) and (9-4-6) would be 

Ro = MEl (9-4-7) 

Rl = M ~ E ,  (9-4-8) 

Now let us deduce a physic~l statement from (9-4-7) and (9-4-8). First take 
the inner product of (9-4-7) with Eg 

EcRo = E,TME, 

The right-hand side, which is a scalar, may be transposed 

Eg Ro = (E;  ME^)^ = ETMTEO 

substituting from (9-4-8) we have 

Eg Ro = ET R1 (9-4-9) 

Equation (9-4-9) is the basic statement of reciprocity; the inner product of the 
excitation vector and the response vector at place 0 equals their inner product at 



I 
Place 0 I Place 1 

First 
experiment - horizontal of vertical 

displacement forces 

FIGURE 9-2 
A reciprocity example. Reciprocity says that uo = wo + 2wl + w,. 

Second 
experiment 

place 1. Notice that the inner products are between vectors which occur in dzferent 
experiments. 

An example of an elastic system with vector-directed displacement and force 
vectors is depicted in Fig. 9-2. A laboratory example by J. E. White [Ref. 321 
which combines electromagnetic, solid, liquid, and gaseous media is shown in 
Fig. 9-3. A geophone is a spring pendulum coupled to an induction coil. The first 
geophone is mounted on a pipe which rests on the bottom of a glass desiccator. 
The second geophone is attached to the glass with a chunk of modeling clay, below 
the water level. The top pair of traces shows the (source) current into the first 
geophone and the (open circuit) voltage at the second; the bottom traces show the 
current in the second geophone and the voltage at the first. 

I 
Horizontal I Three - unit $ observations 

force I L I w 2  of vertical 
I wo displacement 
I 

FIGURE 9-3 
An example of the reciprocal principle in a combined electromagnetic, solid, 
liquid, and gaseous system [J. E. White, Geophysics, Ref. 321. 
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EXERCISES 

I Consider Poisson's equation a,, R = - E on five grid points where the boundary 
conditions are that the end .points are zero. A unit excitation at the third grid point 
gives the solution (0, +, 1, +, 0). Find the solution with a unit excitation in the second 
grid point. Observe reciprocity if you do it right. 

2 Write an equation like (9-4-3) for the heat-flow equation. How will the introduction 
of imaginary numbers change the statement of the reciprocal principle ? 

3 Write the three first-order partial differential equations of acoustics in two-dimensional 
cartesian geometry. Observe the gridding arrangement below. 

FIGURE E9-4-3 

Write a set of 27 x 27 equations for the vector ( U I ,  P I ,  WI, U2, P2 ,  W 2 ,  . . . , Us, P9, 

Wg). Make it come out symmetric and in an obviously orderly form. 
4 In Sec. 8-3, Exercises 5 and 6 taken together illustrate the reciprocity theorem which 

states, "If source and receiver are interchanged, the same waveform will be observed." 
Solve the problem of a surface source with a receiver in the middle of the layers and 
solve the same problem with interchanged source and receiver to test the reciprocity 
theorem. 

9-5 CONSERVATION PRINCIPLES AND MODE 
ORTHOGONALITY 

We showed earlier how problems in stratified media reduce to  a first-order matrix 
differential equation of the form 

It  turns out that many problems in the form of (9-5-1) can be reformulated into 
what we will call the Atkinson form. It  is 



where J is a skew-Hermitian matrix (J* = - J) independent of z, G(z) and H(z) 
are Hermitian matrices (H* = H), and 1 is a scalar which will come to play the role 
of an eigenvalue. For example, in acoustics we have 

0 cup 
a P -[ az ?+' I= ' [ (  +-- -  cu lc2i ,][g]-+i[~j (9-5-3) 

K cup 

which can be premultiplied by a skew-Hermitian matrix to give 

The significant thing about (9-5-4) is that the operators are self-adjoint, meaning 
that the right-hand matrix is Hermitian and so is the left-hand operator. To under- 
stand why J(8ld.z) is Hermitian, write it out as a difference approximation 

Inspecting (9-5-5) we see that it is two rows short of being square. Choosing two 
boundary conditions will be like obtaining two more rows. Clearly (9-5-5) is so 
close to being Hermitian that two more rows can be chosen to make it Hermitian. 
For example, the two rows 

could be squeezed between the top and bottom halves of (9-5-5). Since the operator 
(9-5-5) can be made Hermitian by choice of suitable boundary conditions and since 
the other operators in (9-5-4) are already Hermitian, it seems that the Atkinson 
form applies to physical problems in which the reciprocity principle is applicable. 
Reciprocity does apply to most geophysical prospecting problems. A simple 
physical situation in which reciprocity does not apply is sound waves in a windy 
atmosphere. Physically it is because waves go more slowly upwind than downwind, 
and mathematically it is because no J matrix can be found to convert (9-5-1) into 
the form (9-5-2). Only in a source-free region can we convert (9-5-1) to (9-5-2). 
If we choose to let u, play the role of the eigenvalue, then taking source terms to be 
zero we split (9-5-4) into 



Here G(z) has turned out to vanish and k;/o2, which is proportional to the sine 
of the incident angle, is to be regarded as a constant for variable values of the 
eigenvalue o. Alternatively, we could choose -kX2 to be the eigenvalue, and then 
(9-5-4) would become 

Obviously, still another possibility is to let the angle variable -kX2/02 be the 
eigenvalue for fixed o. 

The Atkinson form (9-5-2) leads directly to various conservation principles. 
Let us compute the vertical derivative of the quadratic form y*Jy. 

Very often we take the eigenvalues co, - k:, or -k:/02 to be real, and in such 
a case we have A - A* = 0 and (9-5-8) shows that y*Jy is a quadratic function of 
the wave variables which is invariant with z. In the acoustic example, this quadratic 
invariant is proportional to the energy flux. Specifically 

If we wish to consider a complex frequency co = co, + ico,, then in the first acoustic 
example (9-5-6) equation (9-5-8) becomes 

Noting that if P and W have time dependence exp[- i(w, + icoi)t] = exp (-ico, t + 
oi t), then quadratics like P*P and W*W have time dependence e2"lt and we see 
that the multiplier 2coi can be regarded as a time derivative. Hence (9-5-10) 
becomes 

a -- Re(P*W)= +-  a {l - ( l  --7 ") P*P + p W* W] =.: L (9-5-1 1) 
dz at 2 K  cop at 
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Equation (9-5-11) is interpreted as saying that the time derivative of the energy 
density E at a point is proportional to the negative of the divergence of energy flux 
at that point. In other problems the quadratic forms need not always turn out to 
involve energy. Sometimes momentum is involved. 

A well-known theorem in matrix theory is that Hermitian matrices have real 
eigenvalues. Why then did we consider the possibility of a complex eigenvalue in 
(9-5-8) ? The answer is that the finite difference operator matrix need not be chosen 
to have boundary conditions which make the operators Hermitian. In particular, 
for dE/dt to be nonzero, energy must leak in or out at a boundary. 

Now, let us suppose boundary conditions have been chosen to make Ja/az 
symmetric so the eigenvalues become real. Let yn(z) be a solution to (9-5-2) with 
eigenvalue A,, and let y,(z) be another solution with a different eigenvalue A,. 
The reasoning which led up to (9-5-8) can be used to obtain 

Integrating through z from za to z,, we have 

If boundary conditions have been chosen so that no energy gets in or out at za and 
z, , then the left-hand side vanishes. Since by hypothesis A, f A, we must have the 
right-hand integral vanishing. This states the orthogonality of the two solutions 
(called the two modes) and the idea is the same as the orthogonality of eigenvectors 
of the Hermitian difference operator matrices. The orthogonality of these functions 
is frequently useful in theoretical and computational work. Further details, in- 
cluding the most general form of energy-conserving boundary conditions, may be 
found in Reference 14, Chap. 9. 

EXERCISE 

I Show that application of (9-5-8) to (9-5-7) leads to a definition of horizontal energy 
flux. You may wish to take k, = k, + iki and assume I k,  I + I ki 1 .  

9-6 ELASTIC WAVES 

It is now presumed that the reader has a general knowledge of classical elasticity 
theory. Few textbooks, if any, develop the special subject of stratified media which 
is so important in seismology. Many papers on that subject may be found in the 
Bulletin of the Seismological Society of America (BSSA). For those readers un- 
familiar with the BSSA, we now present the results of applying the general methods 
of this chapter to the equations of isotropic elasticity. 

The conventions in elasticity are (u, w) displacements in x and z directions, 
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z is the stress matrix, 13. and p are Lame's constants and p is density. Hooke's law 
and Newton's law with e -  '"' time dependence leads to 

where 

Define also 

If material properties do not vary in the x direction, we have the row eigenvector 
transformation R to up- and downgoing wave variables. 

and the column eigenvector inverse transform C 



where 

The matrices partition nicely into 2 x 2 blocks. The reader may verify that 
C R = R C = I a n d C A R = A .  



INITIAL-VALUE PROBLEMS IN TWO AND THREE 
DIMENSIONS 

There are whole textbooks (for example, References 33 and 34) devoted to solving 
initial-value problems by difference approximations to differential equations. In 
this section we will briefly cover the main ideas. The overall idea in two dimensions 
is that one partitions a computer memory into one or a few two-dimensional grids 
where field variables are represented as functions of two spatial dimensions. Then 
you insert initial conditions, turn on the computer, and see what happens. There 
have been numerous extensive studies devoted to the diffusion equation, but 
far fewer studies have been devoted to the wave equation. The problem with 
modeling the wave equation is that ten points per wavelength is probably not 
enough, and even at that you cannot fit very many wavelengths onto a reasonable 
grid. The energy then propagates rapidly to the edges of the grid where it bounces 
back, whether you want it to or not. One way to ameliorate this kind of difficulty is 
to develop coordinate systems which move with the waves. These coordinate 
systems also facilitate projection of waves from the earth's surface, where they are 
observed, back down into the earth. This kind of projection forms the basis for the 
practical reflection seismic data processing techniques described in chapter 11. 
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10-1 CLASSICAL INITIAL-VALUE PROBLEMS IN TIME 

It is easiest to cover fundamentals with the heat-flow equation in one dimension. 
The heat-flow equation is derived from two intuitively obvious equations. The 
first says that a flow H of heat arises from a temperature gradient and is proportional 
to thermal conductivity a. 

The second says the temperature decrease is in proportion to the divergence of 
heat flow H and inversely proportional to the heat capacity C of the material 

The usual procedure is to insert (10-1-1) into (10-1-2) and neglect the derivative of a. 

The usual convention in difference equation theory is that temperature T(x, t) = 
T(k Ax, n At) will be written as Ti where the superscript denotes time. With the 
definition b = a At/2C Ax2 (10-1-3) may be written 

If the temperature Ti  is known at all spatial positions k for some particular time n, 
then (10-1-4) may be used to calculate the temperature for all time. The reader may 
notice that the time derivative is centered at Tif ' I 2  whereas the space derivative is 
centered at Ti. This can cause difficulty. The heat-flow differential equation 
smooths out long spatial wavelengths slowly and shorter wavelengths more 
rapidly. The heat-flow difference equation does the same thing, except that very 
short wavelengths will sense the difference in centering of time and space derivatives. 
The result is that the very short wavelengths will not attenuate at the proper rate 
and they may even amplify. In fact, as Ax is reduced more and more, thereby 
making it possible to contain shorter and shorter wavelengths on the grid, amplifi- 
cation will always occur, thereby ruining the solution. This situation, called 
instability, is described in more detail in all the books on the subject. One might 
hope that centering the time difference by approximating dT/dt by (Ti+' - Tft-')/ 
(2 At) would avoid the instability, but it turns out even worse and creates insta- 
bility for any Ax. The reason is that the heat-flow differential equation is 'first-order 
in time, but using a time difference over two steps creates a difference equation 
which is second-order in time. A second-order equation always has two solutions. 
In this case, one behaves like the heat-flow equation; the other turns out to be an 
oscillating increasing exponential like (I, - 2,4, - 8, . . .) which rapidly overwhelms 
the heat-flow solution. 

These problems may all be avoided with the Crank-Nicolson scheme. It will 
always guarantee stability for any Ax and it can also be applied to the wave equations 



in acoustics, electromagnetics, and elasticity. In th% Crank-Nicolson scheme one 
centers the space difference at Ti+ ' I 2  in the following way: 

An apparent problem with the Crank-Nicolson scheme is that the method 
of getting the n + 1 time level from the iz level is no longer obvious. Bringing all 
the n + 1 terms in (10-1-5) to the left and the n terms to the right, we have 

The right-hand side Di is a known function of Tn. What we have here is a set of 
simultaneous equations for the T"". Writing this out in full, we see why the set is 
called a tridiagonal set of equations 

-b [ 1 + -b 2 (1+2b) zer03[:3 [:I (1 0- 1-7) 

zeros 

It turns out that the simultaneous equations in (10-1-7) may be solved extremely 
easily. As will be shown later there is little more effort involved than in the use of 
(10-1-4). The scientist who wishes to solve partial differential equations numerically 
without becoming a computer scientist is well advised to use the Crank-Nicolson 
scheme. The extra effort required to figure out how to solve (10-1-7) is well rewarded 
by the ability to use any Ax and At and to forget about stability and the biasing 
effects of noncentral differences. 

Now let us consider heat flow in two spatial dimensions. The heat-flow 
equation becomes 

A simple, effective means to solve this equation is the splitting method. One uses 
two different equations at alternate time steps. They are 

dT 2 0 8 ' ~  -- - -- (all y) (10-1-9a) 
at c ax2 

aT 2 d 2 T  - (all X) (10- 1-9b) 
at c ay2 

Each of these equations (10-1-9a) and (10-1-9b) may be solved by the Crank- 
Nicolson method. 

There are much fancier methods than the splitting method, but their trunca- 
tion errors (the asymptotic difference between the difference equation and the 
differential equation) do not go to zero any faster than the truncation error for the 
splitting method. 



FIGURE 10-1 
A grid arrangement for the acoustic U=O 
equation. This arrangement avoids the W4 

necessity of taking a, or a, over more 
than one interval. It also results in 
(10-1-1 2) being a scalar equation rather 

w7 

than a 2 x 2 block matrix equation. 

Now let us see how to formulate the acoustical problem in a Crank-Nicolson 
form. Let u and w denote velocities in the x and z directions. Let P denote pres- 
sure, p denote density, and K denote incompressibility. Acceleration equal to 
pressure gradient gives 

and pressure decreasing with the divergence of velocity gives 

Arranging into a matrix and letting d, denote Jjdx, etc., we have 

The implementation of (10-1-10) by a Crank-Nicolson scheme follows in a direct 
analogy to the implementation of (10-1-3). The principal difference is that we have 
vectors and matrices in (10-1-10) but only scalars in (10-1-3). When the splitting 
method is applied to (10-1-10) we have 

and 

at  alternate time steps. When formulating boundary conditions for (10-1-1 la) it 
turns out to be convenient to define P and U on alternate squares of a checker- 
board, See Fig. 10- 1. 



188 FUNDAMENTALS OF GEOPHYSICAL DATA PROCESSING 

A final matter of great practical significance is the fast method of solution to a 
tridiagonal set of simultaneous equations like (1 0- 1-6) or (1 0- 1-7). A slightly more 
general set of equations is 

For the heat-flow equation the elements of (10-1-12) are scalars. In other physical 
problems we may have to regard A, B, and C as 2 x 2 matrices, Tas a 2 x 1 vector 
for each k at the n + 1 time level, and Dk as a 2 x 1 vector function of the field 
variables known at the n time level. The method proceeds by writing down another 
equation (Ek , Fk yet unknown) with the same solution Tk as (10-1-12) 

Write (10-1-1 3) with shifted index 

Insert into (10-1-12) 

Rearrange (1 0-1 -1 5) to resemble (1 0- 1-1 3) 

Comparing (10-1 -1 6 )  to (10-1 -1 3) we see that they are the same, so that Ek and Fk 
may be developed by the recursions 

Naturally when doing this on a computer for any case where matrices contain 
zeros, as in (10-1-11), one should use this fact to simplify things. 

Now we consider boundary conditions. Suppose To is prescribed. Then we 
may satisfy (10-1-13) with Eo = 0, Fo = To. Then compute all Ek and Fk . Then if 
TN is prescribed, we may use (10-1-1 3) to calculate successively TN -, , TN - , , . . . , To . 
Another useful set of boundary conditions is to prescribe the ratios r, = To/Tl and 
r, = TN/TN-,. Begin by choosing Eo = r,, Fo = 0. Compute Ek and Fk . Then 
solve the following for TN . From (10-1-14) 

Then compute TN-i, TN-, , . . . as before. ' 
As stated earlier, there are many more details associated with numerical 

solutions to partial differential equations. This chapter has given only the most 
important tricks for initial-value problems. A program to solve tridiagonal simulta- 
neous equations is given in Fig. 10-2. 



SUBROUTINE TRI(A,B,C,N,T,D,E,F) 
DIMENSION T(N) ,D(N) ,F(N) ,E(N) 
Nl=N-1 
E (1)=1.0 
F(1)=0. 
DO 10 I=2,N1 
DEN=B+C*E(I-1) 
E (I)=-AIDEN 

lo F(I>=(D(I>-C*F(I- DEN 
FIGURE 10-2 T (N)=F (Nl) / (1.0-E (Nl)) 
A program to solve tridiagonal simul- DO 20 J=~,NI 

I=N-J taneous equations. A, B, and C are 20 (I) =E ( I) *T (I) 
assumed independent of k and zero- RETURN slope end conditions are used. END 

EXERCISES 

1 Consider solving (10-1-8) by a Crank-Nicolson scheme in two dimensions on a 4 x 4 
grid. This leads to a 16 x 16 set of simultaneous equations for the unknown T';.;tkl. 
What is the pattern of zeros in the 16 x 16 matrix? The difficulty in actually solving 
this set gives impetus to the splitting method. 

2 A difference approximation to the heat-flow partial differential equation is 

utilizing the trial solution Pjn = QneikjAx reduce the equation to a one-dimensional 
difference equation. Write the reduced equation in terms of Z transforms. Does this 
equation correspond to a nondivergent filter for any real values of a ?  for any imaginary 
values of a ?  (Use a Fourier expansion for s.) 

3 Modify the computer program of Fig. 10-2 so that instead of prescribing zero-slope 
end conditions, (10-1-7) is solved. 

4 Write a computer program to solve equation (10-1-6) with b = .5 and initial conditions 
T(l) . . . T(20) = 0.0 and T(21) . T(30) = 1 .O. Use subroutine TRI. 

10-2 WAVE EXTRAPOLATION IN OPTICS 

In geophysics we generally have measurements along a line on the surface of the 
earth (x axis) from which we like to make deductions about earth properties below 
the surface. The first step is often to extrapolate observations at the earth's surface 
in a downward direction. 

Before looking at numerical methods of extrapolating wave fields in space it 
will be valuable to review quickly the methods used in optics to extrapolate waves 
through microscopes and telescopes. An enjoyable, more complete account will be 
found in Reference 35. 

We will take a wave disturbance in two-dimensional cartesian geometry 
p(x, z, t )  given at z, and show how it is extrapolated down the optic axis. Three 
common situations arise in the projection of a beam of light down an optic axis. 
First is the projection of a beam through an aperture or a photographic trans- 
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parency. All that is required for a mathematical description is a transmittance 
function which ranges from 0 to 1 over the aperture or transparency. Taking the 
optic axis to be the z axis and restricting attention to two-dimensional geometry, 
the projection through an absorber T(x) located at 2, + dz/2 is 

The second common situation is projection through a lens, often approxi- 
mated as a "thin lens." Here it is necessary to define a differential delay function 
z(x) which describes the time delay on propagation through the lens of a ray at x 
parallel to the z axis. If the lens is located at z0 + dz/2, convolution of the wave 
field with a delayed impulse is represented as 

p(t, x, zo + dz) = Jp(t - s, x, zo)6[s - r(x)] ds 

This time shifting is simply expressed in the frequency domain where the convolu- 
tion (10-2-2a) becomes a product. Then 

P(m, X, zO + dz) = P(a,  X, ~ ~ ) e ~ ~ ~ ( ~ )  (1 0-2-2b) 

The third common situation in optics is the projection of waves across a 
region of empty space. Surprisingly, this is the most difficult of the three projec- 
tions. First we recall the wave equation 

( a,, + a,, - -z a,, p(t, x, 2) = o (10-2-3) 
U l )  

Taking the velocity v to be a constant in time and space, we may use the trial solution 

p(t, x, z) = P(m, k, , z)e- i"f + ikxx 

which reduces (10-2-3) to the ordinary differential equation 

This equation has two solutions, eikzz and e- ikzz, where 

One of these solutions is a wave down the z axis and the other is a wave going up 
the axis. Initial conditions (and the no-backscattering approximation at lenses and 
apertures) enable us to reject one of the solutions, leaving us with 

P(m, k,, z) = P(m, k,, zo)eikz(Z-ZO) 
i (02 /u2  - kx2)l/2(z - zO) (1 0-2-6) 

= P(m, k, , zo)e 

The right-hand side is a product of two functions of k,. It is also the product of 
two functions of co. This means that with the standard tools of Fourier analysis we 
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FIGURE 10-3 
Power spectrum in k, for an isotropic distribution of rays from a point source. 
Around 0 = k 90" there is a clustering of rays at k, = i olv .  Power as a function 
of k, will be proportional to d0/(dkX/d0) = d0/(d sin 0/d@ = d0lcos 0 = 
[l - ( ~ k , / o ) ~ I - " ~  do. This result may be compared to the transfer function 
(10-2-7) which has a constant magnitude for - o / v  < k, < w/u. 

could recast (10-2-6) to a convolution in either the time domain or the space 
domain x or both. Converting the " filter" transfer function 

2 112 

exp i (> - k,") ( - ) (10-2-7) 

to the space domain will give us an " impulse response" which in this case has the 
physical meaning of the wave field transmitted through a point aperture. A beam 
emerging from a point aperture behaves somewhat like a beam from a point source. 
To recognize the difference, note that the transfer function (10-2-7) has a unit 
magnitude independent of k ,  but, from Fig. 10-3, the spectral magnitude of a 
point source is lower near k,  = 0 and peaks up around k,  = +w/u. This means 
that the aperture function does not radiate isotropically like the point source but 



FIGURE 10-4 
A snapshot of the wave-equation transfer function. A double Fourier sum of 
exp[i(w2/v2 - k,2)112z] was done over k, and o. We see a display of the (x, z) 
plane at a fixed t. The result is semi-circular wavefronts with amplitude greatest 
for waves propagating along the z axis. Periodicity in x and t results from 
approximating Fourier integrals by sums. 

FIGURE 10-5 
Seismic profile type displays of the wave-equation transfer function. A double 
Fourier sum of (10-2-7) was done over k, and w .  As with a collection of seismo- 
grams, we see the (x, t )  plane for a fixed zo. The hyperbolic arrival times measure 
the distance from a point aperture at (0,O) to the screen (x, zo). Ray theory easily 
explains the travel time, but the slow amplitude decay along the hyperbola, an 
obliquity function, is a diffraction phenomenon not easily computed by analytic 
means, especially far off axis. The obliquity function should not be confused 
with the hash which arises from attempted representation of a delta function on 
a grid. 



FIGURE 10-6 
The real Dart of the exact transfer function. e x ~ ~ i z / ( w ~ / v ~ ) -  kx2z1, plotted 
k, vs. z wsh o taken as constant. The abrupt changein character of thifknction 
occurs at 0 2 / v 2  = kX2, the transition between and evanescence. 

contains more energy near k,  = 0, which is energy directed along the z axis. There 
seems to be no easy analytical procedure for the Fourier transformation of (10-2-7) 
into time and space domains. One of my associates, Philip Schultz, did some 
numerical Fourier transforms to obtain the display's real parts shown in Figs. 10-4, 
10-5, and 10-6. Sample data Fourier transforms induce periodicity in all the 
transformed coordinates. The periodicity is quite apparent, and there has been no 
attempt to suppress it in the figures. 

FIGURE 10-7a 
Fourier transformation by a lens. A sinusoidal oscillation in the x domain results 
from a beam propagating through at some angle. A lens then converts the beam 
to a point in the k, domain. The Fourier transform of a sinusoid is a delta func- 
tion. The shift of the delta function from the optic axis is in proportion to the 
rate of oscillation of the sinusoid. 



(b  
FIGURE 10-7b 
Two lenses separated by twice their focal length can be used to invert an image. 
Two Fourier transforms can be used to reverse a function. 

It is well known that a lens can be used to take a Fourier transform. Actually 
a Fourier transform takes place when a beam is allowed to propagate to infinity. 
The lens just serves to bring infinity back into range. Suppose a monochromatic 
optical disturbance P(x, z, cu) is observed at z, . This function of x may be expanded 
in a Fourier integral of components of the form ~ ( k , ) e ' ~ ~ ~ .  The important thing 
is to recognize that any single component represents a plane wave propagating at 
an angle sin 0 = ukx/cu from the z axis. On propagation to infinity, all these rays 
separate from one another. When they are projected on a screen the largest values 
of k, project farthest from x = 0. Figure 10-7a exhibits this idea where a lens is 
used. That two lenses invert an image is the physical manifestation of the mathemat- 
ical fact that a Fourier transform is not its own inverse. The inverse transform has 
an opposite signed exponential. One can readily verify that transforming twice 
with the same signed exponential just reverses the original waveform. The situation 
is depicted in Fig. 10-7b. 

10-3 NUMERICAL EXTRAPOLATION OF MONOCHROMATIC 
WAVES 

The optical method of wave extrapolation is not valid in materials for which the 
wave velocity v = v(x,  z )  is space variable because then the complex exponential 
function does not turn out to be a valid solution to the wave equation. For this 
reason we will now seek a numerical procedure for extrapolating wave fields which 
does not depend on analytic solutions or any particular velocity distribution. The 
assumption of monochromatic solutions e-i"t reduces the wave equation to the 
Helmholtz equation 

m 

Now let us think about using (10-3-1) to extrapolate P(x, 2,) in the z direction. Say 
we know P at z, for all x. Then we can find P,, by rearrangementUof (10-3-1) 

a2 
Pzz= - T P - P x x  (10-3-2) 

v 
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Given P and Pz for all x at some particular z with the help of (10-3-2) we might 
theoretically expect that we would be able to use a finite differencing scheme to 
obtain P and Pz at z + Az. Actually, a fundamental difficulty is sneaking up on us. 
To understand it, let us assume u is a constant independent of x and that we have 
Fourier transformed the x dependence to kx dependence. Then (10-3-2) becomes 

The behavior of (10-3-3) will be dramatically affected by the sign of the factor 
2 2 -o /v + kx2. If it is positive, we will have growing and decaying exponential 

solutions. If it is negative, we will have nice, sinusoidal, wavelike solutions. Numeri- 
cally the growing exponential solutions will present problems. These growing 
solutions can be kept from getting out of sight if we can start the growing exponen- 
tial function with zero amplitude. This can be arranged by prescribing a certain 
ratio between P and P,. Actually, come to think of it, geophysically we usually 
measure only P anyway and we do not measure Pz , so why not figure out theoreti- 
cally a value of Pz from P which avoids the growing solution? Furthermore, in 
optics the extrapolation of P(x, 2 , )  to P(x, 2,) does not depend on knowledge of 
the derivative P,(x, z,). The wave equation is second order in z and hence has two 
solutions (upgoing and downgoing). Thus two boundary conditions are required. 
In the usual boundary-value problems in physics, solutions are required in the 
intermediate region between zo and z, and the appropriate boundary conditions 
are to prescribe P at zo and P at 2,. How does the optical method succeed in 
avoiding the need for either P, at zo or the need for P at zN? It succeeds because 
one of the two solutions was thrown away when kz was defined by choosing only 
one of two possible square roots. Since one solution is left, only one boundary 
condition is required instead of two. Throwing away one of the solutions amounts 
to making an assumption about the physical situation which may or may not be 
valid. The validity of this assumption is always a matter of degree and depends on 
practical factors. Our present objective is to modify (10-3-2) to build in the common 
optical assumption that we are only trying to describe waves with a component 
along the + z  axis, without building in the common optical assumption of a homo- 
geneous medium. Instead of (10-3-2), which is second order in z and describes 
waves which go in both plus and minus z directions, we would like to have an 
equation which is first order in z and describes only waves in the + z  direction. 
Since geophysically we do not observe Pz ,  a valuable added bonus would be that 
such a first-order equation would require only P(x) as an initial condition, not 
both P and Pz . Geophysically, the " downgoing wave" assumption can often be 
used when we are describing the wave field emitted from active prospecting equip- 
ment, and an " upgoing wave " assumption can often be used to describe subsequent 
observations. Naturally, in any situation, the validity of these assumptions must 
be investigated. To describe a plane wave propagating in the + z direction we may 
write 



Saying that Q ,  is an unknown constant amounts to saying that the wave has un- 
known amplitude and phase. Next we write 

Now, "Q(x, Z) is approximately a constant function of x and z" is a rather fuzzy 
statement which we will proceed to sharpen up. By restricting Q(x, z) to slowly 
variable functions we will be restricting P(x, z) to wave fields which are near to 
plane waves propagating in the z direction. In fact, P might represent plane waves 
propagating at a small angle from the z axis, or it might be a small portion of a 
spherical wave, or it might be the observed backscattered radiation in a seismic 
reflection survey, or on 90" rotation of the coordinate system it might describe 
surface waves. 

The ratio colu occurs often and it is called the spatial frequency of the wave. 
We define 

We also define E as a spatial average of m. 

In a material which is homogeneous m will equal m. With this definition we write 
the wave disturbance as 

Now an additional condition to make Q(x, z) slowly variable with z is that m(x, z) 
be relatively near to m. Let us compute some partial derivatives of (10-3-6) 

p, = Q, eiiiiz (1 0-3-7a) 

Pxx = Qxx eirnz (10-3-7b) 

P, = (Q, + imQ)eiiiiz (10-3-7c) 

P,, = (Q,, + 2iEQ, - E2~)ei i i iz  (10-3-7d) 

Insert (10-3-7b) and (10-3-7d) into (10-3-1) and cancel the exponential, obtaining 

Q,, + Q,, + 2iEQ, + (m2 - m2)Q = 0 (10-3-8) 

Now we make the very important step where we assert that for many applications 
Q is slowly variable and Q,, may be neglected in comparison with 2imQz. Drop- 
ping the Q,, term will be called the parabolic approximation or the paraxial 
approximation. This gives us the desired first-order, hence initial-value, equation 
in z. 

Q,, + 2imQ, + (m2 - m 2 ) ~  = 0 (10-3-9) 

In a homogeneous medium, (10-3-9) reduces to 

Q,, + 2imQz = 0 (1 0-3-10) 
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( a )  ( b )  

FIGURE 10-8 
Graph of acceptable wave numbers to wave equation (a) and to one-way wave 
equation (b). 

Equation (10-3-10) is really of the same form as the heat-flow equation if z is 
associated with time and the heat conductivity is taken to be imaginary. The 
equation is, in fact, known as the Schroedinger equation. It may be solved numeri- 
cally by the means described for the heat-flow equation in Sec. 10-1. Ultimately 
(10-3-10) will be advocated for quite a number of purposes, so before we proceed let 
us take a look at what we have lost by dropping Q,, . To facilitate comparison of 
(10-3-10) to the wave equation, let us convert back from the Q variable to the P 
variable. Rearrange ( I  0-3-6) and form derivatives. 

Q = p,- i l z  (10-3-1 la) 

Qxx = Pxx e 
- i l z  (10-3-1 lb) 

Q, = (P, - i F i ~ ) e - ~ ~ "  (10-3-llc) 

Insert (10-3-1 lb) and (10-3-1 1c) into (10-3-10) and cancel the exponential, getting 
the equation which we will call the one-way wave equation. 

One technique which may be used to solve any partial differential equation in 
cartesian coordinates with constant coefficients is to insert the complex exponential 
e(ik, x + ik, z) . If k, and k, turn out to be real, then this trial solution may be inter- 
preted as a plane wave propagating in the k = (k,, k,) direction. Inserting this 
exponential into both the wave equation (10-3-1) and the one-way wave equation 
(10-3-12) and canceling the exponential, we get two algebraic equations called 
dispersion relations. They are 

These two equations are graphed in Fig. 10-8, a and b. 
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FIGURE 10-9 
Snapshots of the monochromatic wave-equation transfer function. A Fourier 
sum over k,, done over the exact wave-equation transfer function 
exp[i(l - k,2v2/w2)112 wz/v], is displayed (top) in the ( x ,  z) plane for a fixed 
frequency coo. Middle is the same for the 15" approximate transfer function 
exp[i(l - kxZv2/2w2)wz/v]. Bottom is the same for the 45" approximation [ w 4w2 - 3kx2 v2 

exp i - of Exercise 2. 
v 4wZ -kx2 v2 

The physical picture is of waves passing through small apertures which are peri- 
odically spaced along the x axis. 



z 

FIGURE 10-10 
Snapshots of the time-dependent wave-equation transfer function and approxi- 
mations. A double Fourier sum over k,  and w of the functions of Fig. 10-12 
shows the ( x ,  z )  plane at a fixed time. 

The graph for the wave equation is a circle and illustrates what we already 
know, namely that the magnitude of the wave number in an arbitrary direction, 
that is, (kx2 + kZ2)'I2 is equal to the constant o l u .  Such is not the case, however, 
for the one-way wave equation. Here we have only the approximation kX2 + kz2 x 
0 2 / u 2  for small angles 8. Figure 10-8a also illustrates geometrically that (10-3-14) 
is an initial-value problem in z because Fig. 10-8a gives two values for kz corre- 
sponding to any kx , but Fig. 10-8b gives only one value for k, . Figures 10-9, 
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FIGURE 10-1 1 
Seismic profile-type displays of the wave-equation transfer function and two 
approximations to it. Exact, 15" approximate, and 45" approximate forms of the 
wave-equation transfer function were Fourier summed over k, and o. As with 
a seismic profile, we see a display of the (x,  t )  plane for a fixed z. The exact 
solution (top) is a delta function along a hyperbola. The 15" approximation 
(middle) is a parabola. The approximations die out more rapidly with angle than 
the exact solution. 
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FIGURE 10-12 
Monochromatic wave-equation transfer functions displayed in the plane of 
(k,, z). The real part only is shown. Top is the exact transfer function. Note the 
abrupt change to evanescence at 1 k, v/w I = I sin 90" 1 = 1. The exponential decay 
for k, > w/v is perceptible near z = 0. The 15" approximation (middle) and the 
45" approximation (bottom) are all-pass filters and have replaced the evanescent 
region by an interesting design. In order to eliminate a massive amount of short 
horizontal wavelength fuzz in the spatial domain on the previous two figures, 
this evanescent zone was removed with a step function. The implication in a data 
processing application is that occasionally the approximate transfer functions may 
well be augmented by a fan-filter. (See Ref. [36].) 
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FIGURE 10-13 
The dispersion relation for an ideal one- 
way wave equation is a semicircle. 

10-10, 10-1 1, and 10-12 show the wave equation transformation function eikz " and 
approximations eikz ' and Fourier transformations thereof. 

What we really want is a one-way wave equation which has the semicircle of 
Fig. 10-13 for its dispersion relation. The equation for the perfect semicircle is 
given by 

k, = Jm2 - k,2 (10-3-15) 

This of course is the basic relation used for extrapolation in optics. By the bino- 
mial expansion, (10-3-15) may be written 

This expression converges for all 0 < k, < m. 
Now for the sudden flash of insight which enables us to write the partial 

differential equation with this semicircle as its dispersion relation, from (10-3-16) we 
are inspired to write 

Clearly, insertion of the plane wave exp(ikxx + ikzz) into (10-3-17) immediately 
gives the desired semicircular dispersion relation (10-3-16). Thus, the greater the 
angular accuracy desired the more terms of (10-3-17) are required in the calculation. 
As a shorthand we may choose to write (10-3-17) as 

It will be of no help to us, but it turns out that (10-3-18) is the relativistic Schroe- 
dinger equation. 

It is easy to obtain the wave equation from (10-3-18). Just differentiate with 
respect to z 

a,, P = i az(m2 + a,x)'/2~ 

Taking m independent of z, we may interchange the order of differentiation 
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FIGURE 10-14 
An expanding monochromatic cylindrical wave. The wavefronts are concentric 
circles of decreasing amplitude. The computation begins with an analytic solution 
at the top of the figure in a 100-point linear grid. Using difference equations, we 
stepped the grid downward, thirty steps making up the whole figure. About six 
complex multiplications are required per point; this amounts to about five seconds 
of time on our computer. The display is the (x, z) plane, although a multichannel 
seismogram plotter has been used. (From Ref. [3], p. 408.) 

inserting (1 0-3- 18) 

which is the wave equation. 
Figures 10-14, 10-15, and 10-16 show finite-difference solutions to the para- 

bolic approximated wave equation in homogeneous media. 
Next, let us turn to the question of using the parabolic approximation in the 

presence of space variations in material velocity. The exercises go into considerable 
detail on this matter, but we can easily make some improvements over (10-3-9). 
The main idea is to approximate a circle by a parabola; the actual radius of the 
circle does not have anything to do with the approximation. This leads to the 
suggestion that (10-3-12) or (10-3-14) could be used with E replaced by m, as in 
(10-3-17) ; hence (10-3-12) would be 
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FIGURE 10-15 
Like Fig. 10-14, but the left-hand boundary is a rigid wall. Waves may be seen 
reflecting back into the medium from the boundary. The reflected wavefront is 
indicated by the shorter of the two dashed lines. (From Ref. [3], p. 409.) 

FIGURE 10-16 
Expanding cylindrical wave. A theo- 
retical solution was put in at the top 
boundary and extrapolated downward 
with the equation of Exercise 2. The 
wavefronts are not quite circular as they 
would be were it feasible to use 
(10-3-18). Notice also that the theo- 
retical r-lI2 amplitude decay is not 
exhibited for waves about 60" off the 
vertical. Such waves attenuate less 
rapidly because at 60' the phase curve is 
flatter than a circle. (From Ref. [5], 
p. 476.) 



FIGURE 10-17 
Waves impinging on a buried block of 
low-velocity material. Waves enter at the 
top of the block and are completely 
internally reflected from the side of the 
block. This leaves a shadow on the out- 
side of the block. (From Ref. [ 5 ] ,  p. 
474.) 

With (10-3-19) we no longer need to assume that m = 57 so we can now deal with 
a wide range of velocities. Actually, as the exercises will show, the validity of 
(10-3-19) depends also on the approximation that the logarithmic space gradients of 
material velocity are small compared with the logarithmic gradients of the waves. 
In other words, the waves change faster than the material does. 

Figures 10-1 7, 10-1 8, and 10-1 9 illustrate the propagation of waves in inhomo- 
geneous materials. 

The approximation is evidently best at high frequencies (short wavelengths). 
This approximation is well known in wave theory. Although it is sometimes called 
a ray approximation, the reader should not fear that the theory has degenerated to 
geometrical optics. Actually all the phenomena of physical optics (for example: 
interference, diffraction, and finite size focus) are still present. In fact we need not 
go to the physical optics limit at all. Some of the exercises are examples that 
include the velocity gradients found in lower frequency terms. Whether many or 
none of these terms is important in practice is a question which is particular to each 
application. 

FIGURE 10-18 
A low-velocity block is illuminated from 
the side. There is partial reflection from 
the side of the block and interference 
between wavesentering the block through 
diflerenr faces. (From Ref. [5] ,  p. 474.) 
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FIGURE 10-19 
Plane waves propagating through a right 45' prism. Waves are incident from the top of the 
page. Shortened wavelength is shown inside the prism. When the waves emerge from the 
prism they are bent toward the right-hand side of the page. As they emerge, their amplitude 
increases because they are compressed into a narrower beam. At the bottom right they 
interfere with waves which have passed along the side of the prism, causing amplitude 
modulation. Curved wavefronts are the result of diffraction from corners of the prism. 
Especially interesting is the diffraction from the upper right-hand corner. This is best seen 
by viewing the figure edge-on from the right-hand edge of the page. The energy for this 
diffraction is removed from the wave along the right-hand vertical edge of the prism. This 
calculation requires ten seconds of computer time on the Stanford IBM 360-67. (From 
Ref. [51, p. 475.) 

Incident plane wave i I 

EXERCISES 

I The variable Q has the practical advantage over P because, being more slowly 
variable with the z coordinate, it may be sampled less densely, thereby conserving 
computational effort. Convert (10-3-19) to an equation in Q by means of (10-3-11). 
Compare the result to (10-3-9). Of the two equations, yours and (10-3-9), which do 
you believe to be more accurate ? Why ? 

2 An excellent square root approximation is given by the rational expression 

What "one-way wave equation" is suggested by this approximation? Make a graph 
of the dispersion relation. For selected angles of propagation how does accuracy 
compare to that of (10-3-14)? 



3 The algebraic equation a  + bx + cx2 = 0 has two roots. If b is sufficiently large, we 
may approximate the smallest root with the linear relation a + bx = 0. An improved 
approximation which is still linear in x may be found by substituting x = -a/b back 
into the quadratic 

Define k; = m - kz and substitute k, = m - k: into kx2 + kz2 = m2. Find the smallest 
root for k:. Show that this gives the same partial differential equation as Exercise 2. 

4 Let the velocity u = v(x) # u(x, z) be a function of x and define m = o/v(x). Define 
the operator 

Note that 
a , P = i O p P  

(az, + Op2)P = 0 = wave equation + error 

Examine each error term and decide whether it is important (1) at high frequencies 
(collect terms proportional to nth power of wavelength) and (2) at small or large 
angles from the z axis. 

5 Review the section on Sylvester's matrix theorem. How is the square root of a 
matrix analogous to the square root of an operator? 

6 Deduce the " outgoing wave equation" in cylindrical coordinates. 
7 Deduce the " outgoing wave equation " in spherical coordinates. 
8 Exercise 3 gave a good wide-angle approximation but Exercise 4 works for m = m(x). 

To utilize the method of Exercise 3 for m = m(x) it is necessary to note that although 
bx - xb = 0, it is not true that (m ax - ax m)P = 0 unless m # m(x). Salvage the 
method of Exercise 3 by avoiding the use of commutivity as much as possible. 

9 Consider surface waves propagating on the surface of an imperfect sphere. Deduce 
an equation, first-order in 4, the longitude coordinate, second-order in 6, the latitude 
coordinate, for waves beamed roughly along the equator. Assume all quantities are 
independent of the radial coordinate axis. 

10 Modify the program of Sec. 10-1 in Exercise 4 to compute the solution to (10-3-10). 
You will need to review the compiler conventions of complex arithmetic. Also, after 
computing Q(x, z) multiply it by eimz to give P(x, z). Print only the real part of 
P(x, z). A physical interpretation of this result is light behind an edge of an opaque 
screen. Waves diffracted into the shadow zone should have semicircular wave- 
fronts if you have arranged your display to preserve Az = Ax on the output. 

11 Let Z  = eikxAx denote a discretization of the x coordinate. Define A(Z) = 2 a,Zn by 
finding a, such that 

uo + f a n ( z n +  $) = 1kxl for IkXlAxSr  
n =  1 

Show that either solution to 

is a solution to  Laplace's diferential equation Pxx + P,, = 0. These soIations may be 
used for upward and downward continuation. 
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10-4 EXTRAPOLATION OF TIME-DEPENDENT WAVEFORMS 
IN SPACE 

In Sec. 10-3 we learned how to extrapolate monochromatic waves in space. To 
extrapolate a time-dependent waveform in space, one could first Fourier transform 
it into monochromatic waves, then extrapolate them as in the previous section, 
and finally Fourier transform back into the time domain. Thus, although this section 
solves, in principle, the same problem as the last section, a direct time-domain 
method will often be preferable for practical reasons. Although a time-domain 
study is necessarily more complicated than one in the frequency domain (all time 
points must be considered together, but each frequency is isolated from the others) 
there is a great deal more understanding to be gained in the time domain, especially 
as regards causality. We will discover that wave-extrapolation procedures are like 
filters (in fact, they are a special kind of multidimensional all-pass filter) and that 
the feedback parts of these filters must be minimum-phase. There are two inde- 
pendent time-domain derivations. 

The first derivation begins by transforming the scalar wave equation 

- 2  0 = P,, + P,, - u P,, (10-4-1) 

into a coordinate frame which translates along the z axis at the speed fi which we 
will generally take to equal or exceed u. It does not matter which way energy is 
propagating in the fixed frame; when it is seen in the moving frame it will remain 
stationary or fall backward. The coordinate transformation 

FIGURE 10-20 
Expanding spherical wave in (a) fixed coordinates (left) and in (b) coordinates 
which translate in the z direction with the velocity of the wave (right). 



is depicted in Fig. 10-20 for fi = v. In the primed frame all waves have a velocity 
component in the plus z' direction. Knowledge of P for present and past time at all 
x' for fixed z' should be sufficient to determine P for present and past values of 
time at (x ' ,  z' + Az') because before anything happens at z' + Az' something has to 
happen at z'. Thus, because of the restriction fi 2 v we anticipate that the linear 
operators which we will develop to extrapolate P in the plus z' direction should be 
causal. Let P' denote the disturbance in the moving frame. We have 

P(x, z, t )  = P'(x', z', t ') (10-4-3) 

It will be convenient to use subscripts to denote partial derivatives. Obviously, 

P, = P:, and 
(10-4-4) 

PXX = p;,,, 
Also 

SO 

and 

SO 

Now we may insert (10-4-4), (10-4-5), and (10-4-6) into (10-4-1) and we obtain 

We will take up the constant velocity case u(x, z)  = 6. The case v # fi is left for the 
exercises. Our main interest in (10-4-7) is with those waves which propagate with 
approximately the velocity of the new coordinate frame. In the moving frame such 
waves are doppler shifted close to zero frequency. This suggests omitting the 
Pi,,, term from (10-4-7). Thus (10-4-7) becomes 

If we Fourier transform out the time coordinate equation (10-4-8) becomes 
- icoP;, = (v/2)P;,,, which is identical to the monochromatic equation 

derived in the preceding chapter. Thus, dropping the Pi,,, term is the familiar 
approximation of a circle by a parabola. 
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FIGURE 10-21 
A point-source at x = 0, z = 0, t = 0. Hyperbolas at left indicate arrival times 
t at z = 0, Az, 2Az. When time is a function of position as given by t" = t - z[v 
the arrival times t" are as indicated on the right. Energy moves in the direc- 
tion of + t", since on a wavefront z = vt cos 8 and we have t" = t - zlv = 
t (1-  cos 0). 

In solving (10-4-8) in a computer we can take either of two points of view. 
The first point of view is that P' is prescribed initially on a grid over x' and z' and 
then the equation is used for extrapolation in t'. The second point of view is that P' 
is prescribed initially on a grid over x' and t' and then (10-4-8) is used for extrapola- 
tion in z'. 

Before developing a numerical method for the solution to (10-4-8) we will 
derive it by means of an entirely different coordinate transformation. Let us take 
the new coordinate frame fixed in space relative to the old one. However, let a 
different clock be used at each point in space in the new frame. The clocks all run 
at the same speed, but they are initialized in such a way that a plane wave traveling 
in the + Z  direction will have the same arrival time measured at all clocks. (This is 
somewhat like a westward moving jet plane.) The transformation equations are 

A disturbance initiated at (x, z, t) = 0 is depicted in Fig. 10-21. Referencing time 
with respect to the time of the earliest possible ray is a great computational con- 
venience. It means the wave onset does not move off the finite, perhaps short, 
computational grid on which a wave packet has been defined. Define the disturb- 
ance in the new frame by P" where 

P(x, z, t) = PP(x", z", t") (10-4-10) 
Proceeding as before, we obtain 
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Inserting these into the wave equation (10-4-1) we obtain 

The last term of (10-4-14) is higher-order small for waves traveling at small angles 
from the z axis; this recalls that the solution to the wave equation for waves in the 
+ z direction is an arbitrary function f (t - zlv) = f "(t"). Thus df "ldz" vanishes for a 
wave along the z" axis. Neglecting P~,,,,, we find that (10-4-14) reduces to 

which is the same equation as (10-4-8). Use of e-'"' time dependence in either 
(10-4-8) or (10-4-15) yields the equation (10-3-10) which was developed for extrap- 
olation of monochromatic waves. Another point of view is that we could have 
obtained the time-dependent equations of this chapter by merely replacing - iw in 
the monochromatic equations with 8,. 

Now we develop a differencing scheme for the solution to (10-4-8) or (10-4-15). 
Drop primes. Let j At refer to time. Let n Az refer to the coordinate z. Let 6 
denote a difference operator. Let PJ be a vector at each value of n and j. Running 
down the vector will be values of pressure along the x axis. By using matrix algebra 
we avoid writing a subscript for the x dependence. Let T denote a tridiagonal 
matrix with the negative of the second difference operator -(I, -2, 1) on the 
diagonal. With all these definitions (10-4-8) or (10-4-15) becomes 

Let us define a = v Az At18  AX^. Now we must decide more precisely what first- 
difference approximations to use in (10-4-16). We will use the Crank-Nicolson 
scheme which is equivalent to the bilinear transform. First do centered time 
differencing 

6,(PJ + , - PJ?) = - aT2(P J + , + P,?) 

and then do centered space differencing 

From the point of view of computation we assume the unknown is PJI: and that 
all else is known. Bringing the unknown to the left and the known to the right, we 
have 

For each n and j, the right side collapses to a known vector. The left side is the 
tridiagonal matrix (I + aT) multiplying the unknown vector PJ: :. The solution of 
these equations is extremely simple and may be done as was the heat-flow equation 
in Sec. 10-1. Boundary conditions in x are contained on the ends of T. For z and 
t boilndary conditions it is sufficient to give, at all x, P z o r  all n and Py for all j. 
Other boundary arrangements are possible. 
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A very important question is the one of stability. We will now establish that 
the recursion (10-4-18) is stable for any positive value of a. If eigenvalues and 
eigenvectors of T were known and if all the PS were expanded in terms of the 
eigenvectors of T, then (10-4-18) would decouple into many separate equations, 
one for each of the eigenvalues of T. The eigenvectors of T have components which 
are sinusoidal functions of x. If there are boundaries in x, then a discrete set of 
frequencies is allowed, otherwise there is a continuum. To see this observe that for 
the unbounded case TP is ( - 1, 2, - 1) convolved with eikx Ax giving 

Thus the eigenvalue is 2 - 2 cos k, Ax = (2 sin k,  AX/^)^. Since any eigenvalue 
must be between 0 and 4 it is sufficient to study (10-4-18) where the vector P,? has 
become a scalar P,? function of k,, I is replaced by 1, and T is replaced by T, an 
arbitrary number between 0 and +4. It can be shown that for energy-conserving 
boundary conditions the eigenvalues are also between 0 and 4. Now, suppose P,? 
is known for all j at some particular value of n and we will investigate the stability 
of finding PYi1 for all j. Now, in (10-4-17) bring unknowns to the left. 

The important thing for stability in (10-4-19) is that if we are successively 
increasing j, then the magnitude of the coefficient of Pyz : must exceed that of the 
coefficient of Py". If we are decreasing j, the reverse should be true. The stability 
may be studied by the Z-transform methods discussed in earlier chapters. By the Z 
transform of (10-4-19) we mean that the coefficient of Zj  of 

gives (10-4-19). The filter function for computing P(z)"+' from P(Z)" is 

We note that for positive a and for all T between 0 and 4, the denominator is a 
minimum-phase polynomial. This means that the time recurrence implied by 
(10-4-19) will be stable. The fact that (10-4-21) takes the form of an all-pass filter 
means that the depth recurrence on n will also be stable. 

We have just completed a rather laborious stability proof. The reader will 
undoubtedly discover that his own application involves a slightly different equation, 
perhaps v = v(x, z) or increased angular accuracy. What general advice can be 
given about formulating problems so that they will be stable for extrapolation? 
To begin with, it helps if you have a physical feeling that all of the information must 
be flowing one way. Then, if trouble occurs, it is most likely to be at unsuspected 
values of cu, k, , k,, or ratios thereof. Note that (10-4-15) in Fourier transform 
domain is 
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FIGURE 10-22 
Disturbed plane wave propagating through a homogeneous medium. The first 
arrival of a disturbed plane wave heals itself during propagation. The wave coda 
or trail gets more and more complicated and energetic. In the trail, energy moves 
back away from the first arrival while phase fronts (marked by X) move for- 
ward. Beam-steer signal processing (sum over the x coordinate) enhances the 
first arriving signal but tries to destroy later arriving signals (the trail). Although 
this calculation was done beginning with frame to and ending with frame t 6 ,  
the calculation could be done backwards, starting with t6 and ending with t o .  
After time realignment, beam-steer on frame to could collect all signal energy. 

If we are intending to extrapolate in the z" direction we will be forming essentially 
exp(ik,z") or exp(-ikx2z"/w). The reader should recall all the important facts 
about all-pass filters and spectral factorization. When wave propagation is to be 
modeled by all-pass filters and if the all-pass filters are supposed to be realizable or 
causal, then the phase derivative or group delay should be positive for all frequen- 
cies. We have in this case for the phase derivative 

which is, as required, positive for all o. The fact that it is positive for all o and all 
k, is important. Merely to be positive for values of o and k, of practical interest is 
not enough. If for any value of co or k, the group delay were negative, then the 
time domain extrapolation equations would blow up. 

Finally, let us consider the example depicted in Fig. 10-22. In the first frame, 
a planar wavefront is deformed, as if by propagation through a region of velocity 
which varies periodically in the x direction. In optical terminology, the first frame 
of Fig. 10-22 would represent an impulsive plane wave just after emergence from a 
phase grating. In terms of atmospheric acoustics, the disturbance might arise 
from passage of a plane wave through the periodic circulation cells depicted in 



FIGURE 10-23 
Possible means of producing a disturbed 
plane wave. Incident plane wave at bot- 
tom is altered by a material inhomo- z' 
geneity. For example, circulating air 
cells (center), resulting in the disturbed 
wave at the top. 

zzx 
'" Ill x 

Fig. 10-23. Successive frames in Fig. 10-22 depict the subsequent history of the 
waveform. In optics texts (e.g., Goodman, Reference 35, p. 69) the monochromatic 
solution is usually obtained at infinity. The most obvious development is that the 
energy spreads out as one moves to successive frames. The single pulse of the top 
frame has become an extended oscillatory arrival by the last frame. As time goes on, 
less and less energy is in the first pulse and more and more is in the oscillatory tail. 
Another very notable feature is that after some long time the first arrivals tend to be 
aligned again so that disturbances in a wavefront may be said to heal themselves 
as time goes on. In contrast, the coda (wave tail) develops into a spatially in- 
coherent wave. (This mimics the behavior of most geophysical wave observa- 
tions.) We may note several other less apparent aspects to Fig. 10-22. Although 
energy moves back from the first arrival, a point of constant phase in the wave tail 
(indicated by X) moves forward toward the wave onset. Also the dip, or apparent 
direction of propagation, tends to increase going down a frame. This represents the 
ray interpretation that late arrivals have taken longer ray paths. Also the 4 2  phase 
shift of a two-dimensional focus which causes doublets to form may be seen at A in 
the second frame. 

In order to represent a disturbance of infinite extent in x on a finite computer 
grid, the problem was initialized with a periodic disturbance having zero slope at 
the side boundaries. Zero-slope boundary conditions are then equivalent to 
infinite periodic extension in x. A value of v At Az/Ax2 = a was chosen to give an 
appropriate variation in progressive frames with each frame in Fig. 10-22 repre- 
senting five computational iterations. The solution may be rescaled in several ways 
because of the interdependence of v At, Ax, and Az. 

It might be valuable to consider various data enhancement processes in the 
light of Fig. 10-22. In the process called " beam-steering," observations such as 
those in Fig. 10-22 would be summed over the x coordinate in an effort to enhance 
signal and reject noise. Clearly beam-steering will enhance the first arrival while 
rejecting random noise. It will also tend to cancel signal energy which resides in the 
oscillatory wave tails. If one is really interested in enhancing signal-to-noise ratio 
it would hardly seem desirable to use a processing scheme which cancels signal 
energy. As zf or t" is increased the situation becomes increasingly severe, since 
signal energy moves from the initial pulse toward the oscillatory wave tails. What 
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has often been regarded as " signal-generated-noise" may turn out to be signal in a 
potentially valuable form. One can indeed expect dramatic results if enhancement 
techniques are based on entire waveforms rather than only on the initial pulse. 

EXERCISES 

1 State all the assumptions which must be made to specialize (10-4-7) to 

Derive the analogous equation for the double-prime coordinates. 
2 Find a difference scheme for the equation of Exercise 1 which extrapolates from z' to 

(z' + Az). Show that past time is required if d > v and future time if d < v. 
3 Let a coordinate transformation be defined by 

x ' = x  

Put the scalar wave equation into these coordinates. 
4 Show that if the transformation velocity d in (10-4-9a), (10-4-9b), and (10-4-9c) takes 

any value less than the v in the wave equation, then stable difference equations will 
result . 

5 Consider the difference equation (1 + 6,,/12) a,, P = b 6,,P. For what value of b does it 
reduce to an explicit scheme? Is the time recurrence stable for that value of b ?  

10-5 BEAM COUPLING 

Much of our information about the interior of the earth arises from interfaces 
within the earth which convert downgoing waves to  upgoing waves. In layered 
media a mathematically strict decomposition of disturbances into downgoing 
waves [exp(ik, z)] and upcoming waves [exp( - ik, z)] was possible, but at  present no 
such decomposition has been developed for two- or three-dimensional inhomo- 
geneitr What we have is a collection of ad hoc techniques whose rigorous justifica- 
tion depends on the absence of horizontally propagating or evanescent energy. As a 
practical matter, what we are really interested in is not just the decomposition of 
waves into downgoing and upgoing parts. We are interested in describing the 
interactions between more-or-less collimated beams. In holography, these are the 
incident (or reference) beam and the scattered beam. In global seismology, these 
could be the incident compressional wave beam and the scattered shear wave 
beam. They need not have any particular orientation to each other or to  the vertical. 

The wave-extrapolation techniques described earlier can be used to describe 
beams collimated roughly along the z axis. Now we take up the task of describing 
the interaction between two such beams. For simplicity, these will initially be 
taken to be two more-or-less vertically propagating beams, one going down, the 



other up, interacting at a planar horizontal interface. The technique developed can 
then be applied to a great many less restrictive geometries. The accuracy of results 
in more general geometries is then a practical question whose answer varies from 
one situation to the next. Accuracy limitations come from many sources, which 
include 

I Angular dependence of velocity in the collimated beam which arises from 
Fresnel-like approximations 
2 Neglect of evanescent energy 
3 Possible inability of two collimated-beam equations to describe all 
important beams generated at a complicated interface 
4 Approximation of elastic compressional waves by the scalar wave equa- 
tion. 

The significance of accuracy limitations must be evaluated in terms of accuracy 
of experimental work, required accuracy, and accuracy and cost of competitive 
techniques. Such evaluations are completely beyond the scope of our present 
efforts. 

In this section we will describe only the primary reflected seismic energy in 
reflection seismic exploration. Large-amplitude waves are initiated at the earth's 
surface by means of dynamite or other high-energy sources. These waves penetrate 
into the earth where a small fraction of the energy echoes at weak reflectors and 
gets sent back to sensitive surface geophones. Occasional situations where a 
noticeable amount of energy scatters up and down several times (called multiple 
reflections or just multiples) will be discussed in a later section. For a plane layered 
medium we can use equation (9-3-13). 

Because the practical situation which we are trying to describe satisfies the inequality 
U 4 D, we will approximate the lower equation in (10-5-1) by 

1 z Dz = iab D - - D (10-5-2) 
2Y 

To get a physical understanding of (10-5-2) which is applicable even when a, b, and 
Y are z-variable, note that the solution to (10-5-2) which can be verified by direct 
substitution, is 

D = Do Y - l J 2  exp (/:abdz) i (10-5-3) 

In other words, iab controls the phase (or velocity) of the wave and Y,/ Y controls 
amplitude change. Thus, we can interpret the Yz/ Y term as providing the physical 
effect associated with a transmission coefficient. It often happens that the velocity 
information in ab is approximately known, but the location of interfaces in the 
earth given by discontinuities in Yz/ Y are totally unknown. This means that we 
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need not abandon our calculation of D if we are prepared to admit that its ampli- 
tude errs by the unknown transmission coefficients. 

The basic thrust of Sec. 10-3 was that we can treat nonplanar waves by 
2 2 regarding iab as the square root of the differential operator - (a  /u + a,,). For a 

beam collimated downward along the z axis a first approximation to the square root 
is given by ico/v[l + u2(dXx/2co2)]. With the beam-collimation assumption (azz z 0) 
and the unknown admittance gradient taken as zero, the downgoing wave D can be 
calculated with the equation 

ico iu 
D z = -  D + -  D,, (10-5-4) 

u 2co 

This would more closely resemble the bulk of our earlier work if we assumed 
homogeneous velocity v = fi and then made the transformation D = ~ ' e ~ " "  where 
m = w/v, in which case (10-5-4) would reduce to 

To solve (10-5-4) or (10-5-5) inside the earth it is only necessary to know values for 
D along the surface of the earth (all x, z = 0). In a reflection seismic prospecting 
situation, D could usually be approximated by a delta function at the shot location. 

Now let us turn to the calculation of the upgoing wave U. From the top row 
of (10-5-1) we have 

y z  U,=- iabU--(U-D) (10-5-6) 
2Y 

If we care to neglect the transmission coefficient effect on U while retaining the 
reflection coefficient interaction of U and D, this becomes 

y z  Uz = - iab U + - D (10-5-7) 
2Y 

Because reflection coefficient c is defined as 

we can [for Y(z) differentiable] write (10-5-7) as 

Uz = - iab U - cf(z)D (10-5-8) 

As with the downgoing waves, we can generalize from plane waves to beams with 
the square root approximation, obtaining 

ico iv 
Uz = - - U - - U,, - c'(x, z)D (10-5-9) 

u 2co 

A change of variables to U = U"e-'"" and D = ~'e ' ""  with the homogeneous- 
velocity, inhomogeneous-admittance assumption converts (10-5-9) to 

u:)= -- v/2 
U:, - c'(x, z ) ~ ' e ~ ' " "  (10-5-10) 

- ico 



FIGURE 10-24 
Two examples of down- and upgoing waves. The two left-hand frames show 
downgoing spherical waves from two different source locations. These waves 
illuminate a dipping interface. At the interface is both an impedance contrast 
and a velocity contrast. Waves of longer wavelength are seen below the interface. 
The right-hand frames show the upcoming waves. They vanish beneath the 
interface. Along the interface, the phase of the upcoming wave equals that of 
the downgoing wave. 

It is important to understand how we can calculate the solution to (10-5-10). 
First of all, D' must have been calculated by some other equation before we start on 
U". In the solution of (10-5-10) we will regard c(x, z)D1 as a source term for the 
generation of U". Now there are two important cases. The first one is data synthe- 
sis. This is called the forward problem. The other case, called the inverse problem, 
is where the data sample U" is given at the earth's surface, z = 0, and the problem 
is to deduce both c(z) and U"(z) as you integrate U" downward. The inverse 
problem is more fully treated in the chapter on seismic data processing. Here we 
will stick to the forward problem. A boundary condition on U" which will enable 
us to use (10-5-9) to find U" everywhere is to prescribe that U" vanishes over all x 
inside the earth at some depth z, which is suitably great, say beneath all detectable 
reflectors. Then (10-5-10) is stepped up from z, to zNW1, tN-2, etc. U" remains 
zero until we come up to the first illuminated reflector; that is, the deepest place 
where both c(x, z) and D' are nonvanishing. At this point, the source term in 



(10-5-10) is turned on and U" becomes nonzero from then on upward. This calcula- 
tion is illustrated in Fig. 10-24. 

The calculation can also be done in the time domain. We have the downgoing 
wave transformation 

and the upgoing wave transformation 

And we have the possibility of expressing U and D in either frames (10-5-1 1) or 
frames (10-5-12) 

U(x, z, t) = Uf(x', z', t') = U"(xn, z", t") (10-5-13a) 

D(x, Z, t) = D'(xt, z', tr) = Dn(x", z", t") (10-5-13b) 

The chain rule for differentiation gives 

a, D = a,, D' (1 0-5-14a) 

and 

Taking velocity-homogeneous media v = 6, multiplying (10-5-4) and (10-5-9) 
through by - io, and then identifying - i o  with a time derivative, we obtain 

1 
- 
v 

D,, = - -I D,, + - D,, 
v 2 
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Equations (10-5- 16a) and (1 0-5- 16b) are readily converted by means of (1 0-5- 14) 
and (10-5-15) to 

Now (10-5-17a) can be used to compute D' but (10-5-17b) calls for D". Subtracting 
(10-5-12c) from (10-5-1 1 c) we get 

So, using (10-5-13b) we find (10-5-176) can be expressed in terms of D' as 

This time-domain result is the transform of (10-5-10). 

EXERCISES 

I Show that fr[(d/dz) In I] is the reflection coefficient c' as seen from above the interface. 
2 Recall from (9-3-20) that the definition of Y includes k,. This was neglected in the 

derivation of (10-5-10). Improve (10-5-10) to include the implied aD'/Sx terms. 
This improvement allows reflection coefficient to be a function of angle. 

10-6 NUMERICAL VISCOSITY 

Positive numerical viscosity means that the short wavelength deviation of a differ- 
ence equation from a differential equation is such that the short wavelengths tend 
to dissipate as the calculation proceeds. The numerical viscosity may also turn out 
to be negative, causing short wavelengths to amplify rather than attenuate. Whether 
or not there are good scientific reasons to study numerical viscosity, scientists 
often get dragged into this study for several reasons: First, even if differential 
equations do not violate causality there may be instability due to negative viscosity 
in the difference equations. Second, the realities of computer economics (especially 
in a multidimensional problem such as P,, = (u/2)Pxx may require that waveforms 
be sampled with as few points as practicable. Third, when observational data are to 
be processed, as when P(x, t) is to be extrapolated from z, to z, , then the data may 
be inconsistent with certain assumptions upon which the extrapolating equation is 
based. 

For example, suppose that P(x, t) has Fourier transform Pt(kx, cu). Then, 
2 2 since kx2 + kZ2 = w /u , freely propagating waves are characterized by I kx( < w/v 
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FIGURE 10-25 
The relative error at short wavelengths often associated with expressing differ- 
ential equations in difference form. 

so P'(k, , o )  should vanish unless / k, I < olu. In the derivation of P,, = u/2 P,, 
it was further assumed that the waves have small angles of propagation; hence, the 
inequality becomes stronger, I k, 1 < o / u .  Since observational data will certainly 
not satisfy these conditions exactly we have two options. First, we can hope to 
ignore the illegal part of the (k,, o )  space if the data do not have much energy 
there and if our difference equation does not unacceptably amplify it. Second, we 
can modify our difference or differential equations so that there is a controlled 
positive numerical viscosity in the illegal part of the transform space. This kind of 
operation is sometimes called fan-filtering because of the wedge-shaped region of 
attenuation in (o, k,) space. 

The operator a,, has the Fourier transform - kx2. The operator a,, amounts 
to a convolution on the x axis with the coefficients (1, - 2, l)/Ax2 ; thus its Fourier 
transform is [exp(- ik, Ax) - 2 + exp(ik, Ax)]/Ax2. We write this as 

Points per 
wavelength, 
2n/w At 

.rr x 10" 
20.000000 
1 6.000000 
12.000000 
10.000000 
8 .000000 
6.000000 
4.000000 
3.000000 
2.100000 

- - - 2 (1 - cos k, Ax) 
Ax2 

w At or 
k, Ax, 
radians 

2 x lo-" 
0.314159 
0.392699 
0.523599 
0.628318 
0.785398 
1.047197 
1.570796 
2.094395 
2.991992 

The approximation ft, to k, is given by 

Relative 
error of 
(10-6-8) 

o(Io-~") 
-0.000021 
- 0.00005 1 
-0.000159 
-0.000330 
-0.000812 
-0.002613 
-0.01 3849 
-0.0461 11 
-0.203548 

Relative 
error of 
2 tan w At12 

10-'"/3 
0.008272 
0.012968 
0.023218 
0.033675 
0.053325 
0.097645 
0.240396 
0.492833 
1.596763 

* 2 
k, = - sin k, 2 (10-6-2) 

Ax 2 

Relative 
error of 
2 sin k, Ax12 

10-2"/6 
-0.004116 
-0.006434 
-0.01 1449 
-0.016504 
-0.025834 
-0.046109 
-0.104913 
-0.189390 
-0.400123 

The error in the approximation Ex z k, is tabulated in Fig. 10-25. 
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The Crank-Nicolson method amounts to another approximation. Here the 
operator a/at which has the Fourier transform - io is approximated by the bilinear 
transformation. The approximation Q to co is given by 

Multiplying top and bottom on the right by e-'" " I 2  we get 

o At 
= -2i tan - (1 0-6-3) 

2 

This approximation is also tabulated in Fig. 10-25. 
To see how higher-order difference approximations may be built up, we solve 

(10-6-2) for ik, getting 

' 2 
ik = - arcsinh ) (10-6-4) 

Ax 

Recall the power series for arcsinh 

1 u 3  1 . 3 u 5  1 ' 3 . 5 ~ ~  
arcsinh u = u - - - + - - - - +  - . .  (1 0-6-5) 

2 3  2 . 4 5  2 - 4 - 6 7  

The inverse Fourier transform of (10-6-4) using (10-6-5) provides a power series 
expansion for 8, in terms of powers of 6,. 

At the present time, reflection seismic data often come close to being under- 
sampled in the horizontal x coordinate. Hence, it is worthwhile to devise a more 
accurate approximation than 6,, to a,, . Squaring (10-6-4) and retaining only the 
first two terms in the arcsinh expansion gives 

where u = iE, 842. Taking the inverse transform we have 

It is most often convenient to use this in the rational form 



By means of a trick, the rational form can be used without going to higher-order 
difference operators. Note that (10-6-8) into a differential equation of the type 
P, = P,, leads to 

The new term a,,, fits on the old computation star and thus amounts to a just 
readjustment of coefficients; that is, hardly any increase in computer costs. Refer- 
ence to Fig. 10-25 shows an astonishing increase in accuracy. On the basis of 
Fig. 10-25 and the acceptable error for some particular application, say 3 per cent, 
one determines a minimum acceptable number of points per wavelength, say 10 
points per wavelength on z and t axes and 3+ points per wavelength on the x  axis. 
Then the useful bandwidth -2n/10 < o At < +2n/10 is markedly less than the total 
bandwidth available (27c is the periodicity interval for transforms of sampled 
data). In this case, the ratio of useful bandwidth to total bandwidth is 115. In 
order to use more of the available bandwidth it is necessary to put up with more 
error or to develop more elaborate difference approximations to differential 
operators. Figure 10-26 depicts the paltry portion of (o, k,) space which is usable. 

For examples of the manipulation of numerical viscosity let us take the 
differential equation P,, = v/2Pxx and modify it to attenuate energy outside the 
usable bandwidth, say where 1 k, Ax]  > nj5. We simply add a term to the right- 
hand side. That is, we modify 

v a , ~  = -- a,, P (1 0-6- 10) 
- 2io 

by judicious choice of an additional term 

To see what numerical value to take for the constant a, we transform the x  co- 
ordinate in (1 0-6-1 1) 

Equation (10-6-12) has the solution 

The imaginary part of the exponeni merely gives the phase angle, which we will 
ignore because we are interested only in magnitude. Let z - zo = d. Then (13-6-13) 
becomes 

i%l .= exp ( - akx2d) (10-6-14) 
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t o  too big 
- 
W 

horizontal 

FIGURE 10-26 
The (w, k,) plane. Field data may be expected to have some energy everywhere 
in the ( 0 ,  k,) plane. Only in the speckled region will our difference equations 
properly simulate the wave equation. Energy with I k, I > I w/v I does not repre- 
sent free waves; it represents either surface waves or errors in data collection 
(often static errors, random noise, or gain not smoothly variable from trace to  
trace). Such energy can mean nothing in a migration program, hence it should be 
rejected by filtering. This may be done by fan-filtering (as in Reference 36) or, as 
is done here, by means of numerical viscosity. Actually, for practical reasons 
one frequently may wish to reject rays outside a certain dip angle. This gives 
the larger fan-filter reject region I k,  1 > I w/v sin(dip) 1 . Although information 
can be carried up to the folding frequency in both w and k,, in practice the use 
of operators of finite length narrows the useful bandwidth. The use of simple 
time-difference operators results in a practical bandwidth restriction to about a 
quarter of the folding frequency. This presents no problem in principle; data may 
be interpolated before processing, or more elaborate (i.e., longer) difference 
operators may be used. 

Now we have to decide how much attenuation is wanted. Say when k,Ax = n/4 
we wish (10-6-14) to imply attenuation to e-l. Thus, for the exponential of 
(1 0-6- 14), we have 

-akX2d= -1 

d 
a(k, Ax)' = 1 



Thus, the term we added to (10-6-10) to get (10-6-1 1) has a coefficient which goes 
to 0 as the squared grid spacing Ax2. Inclusion of this term gives the gaussian 
attenuation function of spatial frequency of (10-6-14). The inclusion of the viscosity 
term seems to add virtually no cost to a computer program. 

Next, let us modify the extrapolation equation so that excessive dips 
[sin (dip) = kv/o] will be attenuated. This is not exactly numerical viscosity 
because we will alter the basic differential equation. It is like numerical viscosity 
in that it is an ad hoc modification intended to correct a certain deficiency. Here 
we modify the differential equation (10-6-10) to read 

To see what numerical value to pick for o o ,  we rationalize the denominator 

v i o  + o0 a , ~ = -  a,, P (10-6- 17) 
2 ( a 2  + oo2) 

Now we may ignore the imaginary part of the right-hand side of (10-6-17) because 
it contributes only the phase of P. Fourier transforming the x coordinate, we have 

There are two cases. We will pick*oo very small so that in the uninteresting case 
where o < oO (10-6-18) reduces to spatial frequency dissipation but in the interest- 
ing case o > o0 (10-6-18) amounts to 

This is obviously attenuation, which is a gaussian function of dip. It is left for the 
exercises to find a numerical choice for coo. 

EXERCISES 

I What value of oo in (10-6-16) will attenuate waves propagating from zl to zz at a 
30" angle from the z axis to e-I times the original amplitude? So that w0 may be said 
to be small, it is necessary to compare it to something with physical dimensions of 
inverse time. Give examples of a situation where oo is small and a situation where it 
is not. 

2 Show that the parameter b in Pz = iv/2w(ax, + b axx,)P may be used to produce a 
viscosity decay of approximate form exp [-bkzz(z - zo)]. This may be useful when 
Az is taken too large. 

3 Consider extrapolation one step in the z direction with the equation P, = -aoZP. 
Insert the bilinear transformation - i o  = 2(1 - Z ) / ( l  + Z )  and deduce that the 
equation cannot be used since a polynomial with a nonminimum-phase divisor results. 



4 Show that the equation P, = a(- 02 At2/2 + io At)P, unlike the equation of Exercise 
3, leads to a causal time-domain filter. (Do the extrapolation in z by the Crank- 
Nicolson method, i.e., the bilinear transform method.) 

5 A given set of data P(x, t )  is believed to satisfy the equation P,, = P,, . It is observed 
that transformed data Q(x, t), where Q(x, t) = P(x, t)eat, fits into a reasonably small 
numerical range so that Q may be represented using integer arithmetic. What differ- 
ential equation does Q satisfy? 



SEISMIC DATA PROCESSING WITH THE WAVE 
EQUATION 

The coordinate frames used by theoreticians to describe wave propagation do not 
include frames in common use by geophysical prospectors to describe observations. 
Whereas the theoretician generally considers a single source (or shot) location at a 
time, the experimentalist deals simultaneously with waves which have been gener- 
ated separately by many shots. Our task in this section is to put the wave equation 
into some prospectors' coordinate frames. 

11-1 DOWNWARD CONTINUATION OF GATHERS AND 
SECTIONS 

Suboceanic prospecting is generally carried out by a ship which carries a repetitive 
energy source and which trails a cable that is 2 to 3 kilometers long and packed 
with sonic receivers. Ideally, the ship's course is a straight line which we can take 
to be the x axis. Ideally, all the seismic waves of interest propagate in a vertical 
plane through the line of the ship's course. This plane is called the plane of the 
seismic section. Despite the fact that it is no great problem to describe waves in 



three dimensions once difference techniques have been mastered for two 
dimensions, we will restrict the theory to two dimensions in order to keep it 
compatible with the bulk of present-day surveying practice and the capability of 
most present-day computing machines. An impulsive wave from a point source 
spreading out in three dimensions will decay in amplitude in inverse proportion 
to the travel time. (The area of a spherical wavefront increases as t 2, so the energy 
per unit area decreases as t2, and so the wave amplitude is proportional to t-l.) 
An impulsive wave from a line source (the line would be on the ocean's surface 
perpendicular to the ship's course) has an amplitude decay proportional to t-1/2. 
Thus, the attempt to compress three-dimensional reality into a one- or two-dimen- 
sional mathematical form often begins (and almost always ends) with a t1f2 or a 
t scaling factor. Of far more practical importance than this scaling is the attempt 
to keep all the seismic rays which emanate from and return to the ship's traverse 
line confined to a single plane. In other words, we hope to avoid recording side 
echoes. Often side echoes can be reduced or eliminated by careful choice of the 
ship's course. But, once the data have been recorded, you have to live with what- 
ever side echoes are there. One way to think about these side echoes is to imagine 
the ship's traverse line as the axis of a cylindrical wordinate system. Instead of 
considering that the time delay of an echo is a measure of the depth to a reflector, 
one now imagines that the travel time is a measure of the radius in the cylindrical 
coordinate system. Interpretation is easy if the plane of the seismic section is 
merely somewhat tipped away from the vertical. Interpretation problems arise 
when the earth is so three-dimensionally complex that several wobbly planes are 
involved and the observed data have become a superposition of many of them. 
In short, where the earth gets three-dimensionally inhomogeneous you cannot get 
along very well with two-dimensional experimental and calculational techniques. 

Figure 1 f -1 shows a most important relationship between two coordinate 
systems. The coordinates of the shot sound source s and geophone sound receiver 
g are taken along the ship's course, which is the x axis. Also along the x axis are 
the shot-to-geophone distance offset coordinate f and the midpoint y between the 
shot and the geophone. 

We are going to describe waves of pressure P(s, g) where the shot and geophone 
coordinates are taken to be independent variables. In reality, the shots and geo- 
phones are not distributed in a continuum along the x axis, but they are usually 
close enough together that it is merely a matter of interpolation to find P for any 
s or g. If the data cannot be interpolated, they will not be satisfactory for use in 
differential equations. 

Another independent variable is time t. The origin point on the time axis is 
chosen so that time t equals 0 when the shot goes off. After the echoes from the 
shot at s have died out completely (ordinarily about 6 seconds), the time axis is 
again reset to 0 for the next shot at s + As. In Fig. 11-1 the t axis may be taken to be 
out of the plane of the paper. Both the (s, g) coordinates and (y, f )  coordinate 
sets are orthogonal. Nonorthogonal coordinates such as (s, f )  are used in 
marine data recording, but they are rarely used in data analysis and we will ignore 
them. 
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FIGURE 11-1 
The relationships among sound source coordinate s, geophone sound receiver 
coordinate g, offset coordinate f = g - s, and midpoint coordinate y = (g + s)/2. 
Theoreticians generally use s and g as coordinates of the wave-pressure field, but 
interpreters generally use f and y. 

Theoreticians usually work in the (g, t) plane for a fixed s. In exploration 
seismology, data in the (g, t) plane are called a projile. Seismic data interpreters 
usually work with wave amplitude in both the (y, t) plane and the (f, t) plane. 
A display in the (y, t) plane is called a seismic section. A display in the (f, t) plane 
is called a common midpoint gather or a common reflection point gather, which, 
unfortunately, in industry is often called a common depth point gather. This termi- 
nology originated in the days when analytical methods usually modeled the earth 
as a stratified medium in which the reflection point, called the depth point, lay 
directly beneath the midpoint. It is unfortunate because of the considerable con- 
fusion we now have with the depth z axis. In this book we will avoid the term 
depth point. A data display over midpoint y at fixed offset f, that is, the (y, t )  
plane, is called a seismic section and it is the only one of the orthogonal planes 



which may continue for hundreds or thousands of kilometers. Projiles and gathers 
continue for only a few kilometers, first because of the limited length of the re- 
ceiver cable, but more fundamentally because of the limited distance over which 
a shot can be heard. 

Profiles and gathers today typically contain about 48 seismic traces. Because 
useful data often lie beyond the 3-kilometer receiver cable, another form of data re- 
cording is sometimes used. This is the sonobuoy. A sonobuoy is a buoy with a single 
sound receiver (called a hydrophone) and a radio transmitter. The buoy is cast over- 
board and the ship sails away, firing at about a six-second repetition rate until the 
buoy is out of range of either the radio or the seismic signals. Such data form a 
common receiver point gather and comprise about 200 to 2000 seismic traces. 
Sonobuoy data are conceptually one of the easiest kinds of data to be imagined as 
providing boundary conditions for wave-extrapolation equations. The principle of 
reciprocity says that we could imagine that the ship had carried the sonic receiver 
and that the buoy had carried the repetitive sound source. (It is not done this way 
because the sonic receiver is an inexpensive, lightweight, throwaway item, well 
suited to the buoy.) Thus, the principle of reciprocity which says P(g, s, t )  = 

P(s, g, t) enables us to imagine a single shot with many hundreds of receivers, just 
what we need for downward continuation of the upcoming and downgoing wave 
fields. 

This brings us to the concept of how we learn about the interior of the earth 
by means of downward continuing waves. As indicated in Fig. 11-2, an obvious, 
but important, idea is that reflectors exist in the earth at places where the onset of 
the downgoing waue is time coincident with an upcoming waue. 

To best illustrate this idea, monochromatic waves will be used. This enables us 
to compute and think in (x, z) for fixed co rather than to have to work in the three- 
dimensional space of (x, z, t). A penalty we pay by going to a single frequency is 
that the idea of time coincidence of two time-dependent waveforms becomes for 
monochromatic waves the idea of both waves being coherent with a fixed phase 
shift (usually zero or 180 degrees) at points in space where reflection can occur. 
We will see that phase equivalence at a single frequency at a single point in space 
does not by itself provide time coincidence. The same must be true of other 
frequencies. Generally, the more frequencies are involved in phase coherency, the 
better will be the spatial resolution. 

The reader will recall that a number of assumptions in Sec. 10-5 led us to the 
idea that up- and downgoing monochromatic waves can be calculated with equa- 
tions like 

In a forward problem, synthetic data are calculated from a model. In an 
inverse problem, a model is calculated from the data. To do a forward problem we 



FIGURE 11-2 
Illustration of the basic principle of reflector mapping. There are a near- 
surface source S and many surface receivers R. At a shallow depth above 
the reflector at the typical point PI the downgoing wave Dl occurs much earlier 
than the upcoming wave U l .  The upgoing wave Ul represents energy which 
has traveled from the source to one or more places on the reflector and then 
back up to the point PI. At a point P,, which is at or near a reflecting interface 
of arbitrary shape, there will be overlap in time of the down- and upgoing 
waves D, and U,. The time overlap may be used in the construction of a map 
of reflector positions. Below the reflector at the point P3,  there is, in 
principle, no upcoming wave. However, practical schemes for estimating 
the upcoming waves U at various depths in large part amount to shifting the up- 
coming waves seen at R to earlier and earlier times corresponding to greater 
and greater depths. Since the practical schemes will have no knowledge of the 
interface, they will predict an erroneous upcoming wave U3 at P3 ,  indicated by 
dots before the arrival of the downgoing wave. This error has no bad 
effect on the reflector mapping formulas which utilize time coincidence of up- 
and downgoing waves. These ideas are valid in situations where there are 
many reflectors at many depths. (From Ref. [ 5 ] ,  p. 468.) 

first assume a shot location at, say z = 0 and x = 0. This provides a delta function 
initial condition for the downgoing wave. Assumption of a velocity model then 
allows use of an equation like, say (1 1-1-1) to continue the downgoing wave down- 
ward to arbitrary depth. At a sufficiently great depth, the upcoming wave U is 
taken to be 0. It is integrated upward with (1 1-1-2) where the product of the 
reflection coefficient c and the downgoing wave D act as a source for the upgoing 
wave. 

Now we approach the inverse problem where we are trying to determine the 
reflection coefficient c(x, z), but we are given the observation of the upgoing wave 
U at the earth's surface (z = 0, all x). We calculate D as before. Since c(x, z )  is 



FIGURE 1 1-3 
Location of a dipping bed with a single source emitting a single frequency. Top 
and bottom represent two possible source locations. The left-hand panel shows 
the real part of downgoing wave D. The dashed line represents a transition from 
low to high velocity as can be seen by the greater wavelength below. The center 
panel represents the upcoming reflected wave U, which originates at the velocity 
jump. On the right-hand panel is plotted the real part of the ratio O/D. The right- 
hand panel tells where downgoing and upcoming waves are in phase. It gives the 
correct dip of the bed. With only a single frequency the depth cannot be deter- 
minded except to within multiples of a half-wavelength. The estimated upcoming 
wave 0, is computed from the true upcoming wave U, observed at the surface 
and the velocity v of the medium; Y,/ Y is not used. (From Ref. 131, p. 417.) 

unknown in (1 1-1-2) we can compute 0 ,  an approximation to U, by marching the 
equation 

down from the surface z = 0 where 0 is given. 
Now the question is, how will 0 depart from U? Between the earth's surface 

and the shallowest reflector (shallowest nonzero c) there will be no difference be- 
tween (1 1-1-2) and (1 1-1 -3). In that region, both U and 0 will be waves of identical 
speeds, directions, rates of divergence, and all other properties. As (11-1-2) is 



projected downward (opposite to the direction of propagation), the source terms in 
(1 1-1-2) serve to "turn off" the upcoming waves until U, unlike 0, totally vanishes 
beneath the deepest reflector. Now the question is whether there is practical 
significance to the fact that 0 does not vanish beneath reflectors. Our purpose in 
computing 0 is to determine the location of reflectors by the time-coincidence idea 
in Fig. 11-2. For this time-coincidence idea, it does not matter that the upcoming 
wave is not turned off beneath an interface. Figure 11-3 illustrates these concepts 
for a monochromatic wave. To display the earth model, the reflection coefficient 
c(x, z) is estimated by displaying t where 

Monochromatic 
Down going wave model reconstruction Model 

Returned wave Reconstructed return Four frequency reconstruction 

FIGURE 11-4 
Synthesis of waves from a reflector which is warped and offset by a fault and 
the reconstruction of an image of the fault. Top left is the wave traveling away 
from a point source. Bottom left shows the upgoing reflected wave. It vanishes 
below the interface. At the bottom center, we see the reconstruction from surface 
observations of the upcoming wave. In doing the reconstruction, one does not 
assume knowledge of the reflectors, since they are what we are looking for. 
Hence, in the reconstructed return, one has an upgoing wave below the reflector. 
At the top center panel we show the product of the upgoing wave with the com- 
plex conjugate of the downgoing wave. The reflector exists along some line of 
zero phase, but with a single frequency, one cannot tell which line represents the 
reflector. The top center panel was summed over four frequencies to get the lower 
right panel, which gives a better indication of the reflector position. More fre- 
quencies would define it more clearly. (From Ref. [5 ] ,  p. 479.) 
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We notice that for a monochromatic wave there will be phase coincidence of 
0 and D not only at the reflector but also at half-wavelength intervals both above 
and below the reflector. (If we had U instead of 0 ,  there would be 0 below.) 
Now the idea is that we can repeat the whole calculation for monochromatic waves 
at other frequencies and sum the results. The summation will always be in phase 
at the reflector but of variable phase away from the reflector. 

Figure 11-4 shows a calculation like that in Fig. 11-3, but more terms were in- 
cluded in the equations (in order to better represent waves traveling at larger angles 
from the vertical) and more frequencies were used (in order to illustrate construc- 
tive interference at the reflector). Another difference between Figs. 11-3 and 11-4 is 
that the reflector estimate is O/D in (1 1-1-3), but in (1 1-1-4) it is OD* (where D* 
is the complex conjugate of D). Both O/D and OD* have the same phase, but they 
have a different amplitude. The advantage of O/D is that it has the magnitude of 
the reflection coefficient. The disadvantage of O/D is that nodes in D, which 
theoretically should imply nodes in U, may cause us to have practical problems 
with division by small numbers. Another advantage of OD* is that if it is to be 
summed not only over many frequencies, but also over many shot locations, it has 
the desirable characteristic that it is small where illumination is poor and large 
where illumination is good. 

Next we attack the important practical matter of how to continue sections 
downward. The obvious approach is to solve a separate problem in the (g, t )  plane 
for each shot point. Alternatively, we could use the reciprocity principle and use 
each receiver point as a separate problem in the (s, t) plane. For reasons we will 
come to recognize, there are considerable practical advantages in leaving the theory 
(g, s) coordinates and continuing downward directly in the interpreter's (y, f )  
coordinates. A compelling practical reason is that many data are collected with a 
single shot and a single receiver which move together 'across the surface of the earth. 
For a fixed shot point there is only one receiver point, so there are clearly insuf- 
ficient data to initialize a downward continuation in the (g, t )  plane. Nonetheless, 
when all shot points are considered, it turns out that with good accuracy we can 
continue the constant offset section downward. 

We will develop two separate equations, one for downgoing waves and one for 
upcoming waves. The conversion from field coordinates (s, g, e, t) to interpreta- 
tion coordinates (y,f, z, t ')  is accomplished with the definitions 

The first two definitions (11-1-5a, 11-1-5b) are merely the transformation from shot 
s and geophone g coordinates to midpoint y and offset f coordinates described 



earlier. Equation (1 1-1-5c) indicates that the receiver elevation e is a point on the 
vertical z axis. In (1 1-1-5d) we have a definition of receiver-elevation-dependent 
time t'. Comparing to Sec. 10-4, it is clear that the plus sign is for waves propa- 
gating in the + z  direction (down) and the minus sign giving t + z/E is for waves 
going up. It is important to distinguish the constant velocity fi in the coordinate 
transform (1 1-1-5) from the spatially variable velocity G(x, z) which will be used in 
the wave equation. Although the coordinate transformation is based on a constant- 
velocity medium, the transformed wave equation can still describe waves in a 
variable-velocity medium. 

Now we state that we are trying to describe the same disturbance in the new 
coordinate system as that in the old one. 

Next, we compute the partial derivative of P with respect to its independent 
variables. 

Now we need the second partial derivatives of P with respect to its independent 
variables. Since all the coefficients of a,, df , at,  , and a, in (11-1-7) are constants, 
then the second derivatives can be found by squaring the operators in parentheses 
in (11-1-7). 

We are familiar with the wave equation in the form 

P,, + Pzz = c-~P,, + source (1 1-1-8) 

We can imagine that the geophones used to observe P could be placed anywhere in 
the (x, z) space. A quantity like P,, on the surface of the earth could be measured 
by setting out geophones at g = x and measuring P,,. We regard the coordinates 
of the geophone location (x, z) = (g, e) as independent variables. Thus, we may 
write the wave equation as 

where we have used a source term defined as a delta function at (x, z, t)  = (s, 0,O). 
Since we do not intend to use this equation in the vicinity of sources, we can drop 
the delta function at the source. Now we take the operators in (11-1-7), square 
them and insert them into (1 1-1-9). This gives 
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First we will neglect Q,, in a Fresnel-like approximation. (Higher accuracy can 
be achieved as in Sec. 10-3 if Q,, is estimated.) specializing to homogeneous media, 
u = v" and using t: = -(+ 1jZi) and t i  = 1 our equation has reduced to 

Equation (I 1-1-1 1) is a partial differential equation in four dimensions starting 
from initial conditions which are data in three dimensions. Frequently a problem 
of this magnitude will not be computationally feasible, so we now consider how to 
remove the offset dimension. Let us integrate (1 1-1-1 1) over offset. We obtain 

Now if Q and Qf should vanish at the great offsets which we take to be the 
limits on the integrals, then the two terms farthest right vanish. Let us define a 
vertically stacked section by 

This stacking is done without time shifting; hence, it is similar to but not precisely 
the same thing as the familiar common reflection-point stack, Thus, for vertically 
stacked sections we have 

We could also have obtained (1 1-1 - 14) from (1 1-1 - 1 1) by merely asserting that for 
zero-offset data the offset derivatives may be neglected and that (1 1-1 - 14) applies 
to near-trace sections. 

Of course (1 1-1 - 14) is no stranger to us. Earlier we learned how the equation 
P,, = .5 UP,, controls propagation of a wave field (like a common shot-point 
gather). This means that (1 1-1 -14) should convert hyperbolas to other hyperbolas ; 
but in fact, because of the Fresnel-like approximation (which is improvable) it 
converts parabolas to other parabolas. In other words, (1 1-1-14) does just the kind 
of thing which is of use in seismic migration. Further details are in succeeding 
sections. 

11-2 WAVE EQUATION MIGRATION 

The construction of a cross section of reflectivity within the earth from a seismic 
section is called migration. At many locations on the earth the subsurface consists 
of horizontally layered sedimentary rocks. At such locations the migration of 
seismic data can be extremely simple because waves propagate vertically to the 
reflectors and they will have a round-trip travel time which is in direct proportion to 
depth. Migration is, then, just applying the proportionality factor to the time axis. 



FIGURE 11-5 
Display of wave fields. Side-by-side display of a collection of shaded seismo- 
grams with information density increasing from left to right becomes a picture 
of a wave field. The picture usually represents acoustic pressure P(x, t )  as a 
function of the horizontal space coordinate x and the vertical time coordinate t .  
When the time axis t is taken to be the vertical travel time of echoes, then the 
picture shows a cross section through the earth. 

Thus, a picture of the waves, as in Fig. 11-5, which may actually show P(x, t )  at 
z = 0 can be regarded as a cross section through the earth, say P(x, 212~) .  Ideally 
the contours between light and dark delineate boundaries between different types 
of sedimentary rocks. Unfortunately, the appearance of alternating strata (between 
black rocks and white rocks?) is usually deceptive. It is unavoidably caused by 
filtering effects in the sources, receiving equipment, or even the earth. The most 
obvious, and perhaps the most important, information carried in the seismic 
section is in the departure of the earth from horizontally stratified models. Seismic 
sections are usually displayed with some vertical exaggeration. Such vertical 
exaggerations commonly range from a factor of 1 to a factor of 20. The right-hand 
frame of Fig. 11-5 happens to have a vertical exaggeration of 5 so that the obvious 
strong reflector which appears to have a 45" slope actually in the earth has approxi- 
mately a 9" slope. From such pictures we may attempt to deduce the present state 
of the earth's subsurface and perhaps some of its history. 

The purpose of migration calculations is to account for the fact that waves will 
not go just straight up and down where the strata within the earth are not just hori- 
zontally layered. Such calculations can incorporate a seemingly endless list of 
complicating factors, but luckily a straightforward application of our equation 
U,, = U,, can in a practical way accommodate the important departures from 
horizontal layering which are found under many regions of the earth. Figure 11-6 is 
an example of the migration techniques to be described in this section. It illus- 
trates that the difference in appearance between a seismic time section and a depth 
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FIGURE 11-6 
Three sinusoidal reflectors at increasing depths (left) and the calculated zero- 
offset reflection seismic section (right). There is no vertical exaggeration. Since 
each reflector has the same shape, it must have the same maximum dip (about 
15") as the others. The departure of the time section from the depth section 
obviously increases as one looks down the frames. A rule of thumb is that 
significant departure begins to occur when the depth becomes comparable to 
the smallest radius of curvature of the reflector (buried focus). The radius about 
equals the depth at the shallowest reflector where strong focusing is apparent. 
(From Ref. [81, p. 758.) 

section need not arise solely from the dip of the strata; in fact, the curvature is 
usually the major factor. Hence, migration can be important even in relatively flat 
areas. 

An impulse incident on an interface gives an impulsive reflection; however, 
there is always some filtering effect in the source, receiver, or earth which converts 
the supposed impulsive waveform to a little wavelet. Ideally, the cross section 
through the earth should display an impulse at the interface, but the migration 
computation carries the wavelet from the time section into the depth section. In 
this way, a resolving power limitation on the time axis is converted to a resolving 
power limitation on the depth axis. An interesting question is that of the resolving 
power on the horizontal x axis. Waves propagating at an angle convert the resolving 
power of the wavelet to an angular axis rather than the vertical axis. Clearly, the 
best horizontal resolving power you could get would be from waves traveling 
horizontally. For 45" waves, horizontal resolving distance would be l/sin 45" times 
as great as the vertical resolving distance. This is illustrated in Fig. 11-7 and in 
other figures. 

The basic operation of migration can be understood in simple terms without 
reference to the wave equation. Figures 11-8 and 11-9 illustrate the transforma- 
tions between time and depth for the two special cases where one domain or the 
other contains only an impulse function. Real data comprise a continuum in (x, t ) ,  



FIGURE 11-7 
Reflections from oscillatory interfaces illustrating lateral resolving-power 
limitations. On the left is a starting model of some oscillatory interfaces. Center 
is the construction of a zero-offset section by the method of this section extended 
to the 45" approximation and modified by numerical viscosity to reject energy 
with dips beyond about 30". The right-hand frame is the attempted reconstruc- 
tion of starting model. It is no longer possible to resolve short-wavelength 
oscillations on the left-hand side of the interface. (From Ref. [8], p. 759.) 

but Fig. 11-8 suggests a migration technique based on the linear superposition 
principle; namely, take every data point in the (x, t )  domain and throw it out to a 
circular arc in the (2, t )  domain. The migrated section is the superposition of all 
these arcs. A natural question one might ask is: Why bother to use the wave 
equation for migration when it can be done with the circular arcs? The answer to 
such a question depends upon a multitude of practical factors, some of which are 
data-dependent. One consideration favoring the wave equation approach is that 
velocity inhomogeneity is more easily and accurately described by wave equations 
than by ray tracing. Both methods are presently commercially available. 

Figure 11-10 is an example which illustrates the origin of the term migration. 
It shows that a dipping interface which terminates at a point will appear in the 
time data to have the termination point migrated down-dip from its true location. 
In an example of this type, the departure of the depth section from the time data 
is really rather modest and it becomes even more slight as the dip is decreased. 

This does not imply that data with slight dips need not be migrated because, 
as we have seen, of the dominating importance of curvature. An interesting 
practical example of this is shown in Fig. 11-1 1. 

Field data examples of many of the synthetic data analyses are shown in the 
data of Fig. 1 1-1 2. 



FIGURE 1 1-8 
The depth response to time-domain impulses and reconstruction of the impulses. 
The fact that the left frame is mostly blank depicts a situation in which no echo 
is received when a source and receiver move together in the horizontal direction 
until they reach the right-hand edge of the frame where the three blips indicate 
that there are three echoes at successively increasing times. With these as ob- 
served data, the logical conclusion is that the reflection structure of the earth is 
three concentric circles with centers on the right-hand margin. The center frame 
shows the circles. (For economy, the right-hand edge of the frame is a plane of 
symmetry.) It will be noticed that the bottom of the circles is darker than the 
top. This is indicative of the 45" phase shift of bringing two-dimensional waves 
from a focus away from the focus. Waves with dips greater than about 45" have 
been filtered away by numerical viscosity. The loss of this energy plus the loss 
of the energy of waves which propagate at complex angles results in a recon- 
struction (right-hand frame) in which the impulses are somewhat spread out in 
the horizontal direction. (From Ref. [8], p. 750.) 

We begin the explanation of how to migrate sections by recalling the basic 
result of Sec. 11-1 (and replacing t' by t). 

Equation (1 1-1-13) defines a sum over offset of all the waves. Equation (1 1-1-14) 
shows how the sum S can be extrapolated down into the earth from the surface 
where it is known. We recall that the plus sign or the minus sign is chosen according 
to whether the extrapolation is done on the downgoing wave or the upgoing wave. 
Recall a source term 6(g - s, e, t) in (1 1-1-9). In midpoint-offset coordinates this 
source term becomes 6(f) const(y)6(~)6(t). Since the source term is a constant 



FIGURE 11-9 
The time response to depth-domain impulses and reconstruction of the impulses. 
The left-hand frame depicts a model of the earth which consists of three point 
scatterers beneath one another along the right-hand edge. The second frame 
shows the synthetic time data created from the model. Basically one observes 
the hyperbolic travel-time curves to the reflecting points. The third frame repre- 
sents migration of the synthetic data back to the point scatterers. As in Fig. 
11-8 there is a reduced resolution because, in principle, horizontal resolution 
cannot be better than vertical resolution (which is controlled by the frequency 
content of the waves) and in practice we have included only rays up to angles of 
about 40". (From Ref. [8J, p. 751.) 

Depth Time 

FIGURE 1 1-10 
An illustration of the origin of the term seismic migration. Left is a depth section 
consisting of three terminating interfaces. On the right is the synthetic time data. 
Note that besides the broadening of the termination point (by spreading it into 
a hyperbola) there is a general migration of the termination "point" in the down 
dip direction. (From Ref. [8], p. 756.) 



242 FUNDAMENTALS OF GEOPHYSICAL DATA PROCESSING 

FIGURE 11-11 
The classic graben model. Of practical significance is the fact that a concave 
structure appears convex in the time section. Thus, a geologic syncline may be 
confused with an anticline and the conditions for petroleum accumulation could 
be erroneously inferred. (From Ref. [8], p. 757.) 

function of midpoint y, we can expect (1 1-1-14) for the downgoing wave to reduce 
to S,, = 0. The general solution to S,, = 0 is an arbitrary function of z added to an 
arbitrary function oft. Because we are interested in wave oscillations, not potential 
theory, we cast out the arbitrary function of z. The remaining time-dependent 
function which is independent of z must be equal to the time dependence of the 

FIGURE 11-12 
Example of migration of marine reflection seismic data. Left-hand frame data 
(courtesy of Royal Dutch Shell) were migrated with the wave equation (by 
Digicon, Inc.) and the result is shown in the right-hand frame. A prominent 
irregular reflector just below two seconds in the migrated section (right) is 
highly diffracted on the surface data (left). 



source function; that is, a delta function of time. Since we now have an analytic 
function for the downgoing S at all depths, we can next turn to the numerical 
downward extrapolation of the upcoming S. Equation (1 1-1-14) with the minus 
sign enables us to do the downward extrapolation of the upcoming wave. Because 
the downgoing wave is a plane wave, the upcoming wave, if seen down at the 
reflectors, will take on the shape of the reflectors. Thus, the migrated section 
comprises the surface observations extrapolated downward to the proper depth. 

As a practical matter, it turns out that investigators do not presently use the 
vertical stack defined by (1 1-1-13). They inject a time shift as a function of offset 
before doing the summation. The main effect of this is to make all offset traces 
more closely resemble the zero offset trace. The time delay of waves recorded on a 
zero offset section is equally divided between the downgoing path and the upgoing 
path. The two paths have unequal delays when the downgoing wave is a plane 
wave and the upcoming wave represents complicated scattering. From these con- 
siderations, we can now guess a result from (1 1-3-18) which is that the migration 
equation for a zero offset section, or an NMO stack resembles (1 1-1-14) but con- 
tains an extra factor of 2. Thus, we begin with 

There may be some practical justification in allowing fi to be variable in some 
of the three coordinates (y, z, t); however, by keeping the velocity constant in y we 
can simplify our first encounter with the details of migration. Fourier trans- 
forming the y variation with eiky we reduce (1 1-2-1) to 

Now we will discretize the z and t coordinates. Then the function Q in (11-2-2) 
may be tabulated in the (z, t) plane and the differential operator in (1 1-2-2) becomes 
a 2 x 2 convolution operator in this two-dimensional plane. The operator is 

Defining a scale factor 

the operator multiplied by Az At is 

When the operator (1 1-2-5) is laid upon an arbitrary place in the Q table and the 
four numbers in the operator are multiplied onto the four Q numbers beneath the 
operator, the meaning of (11-2-2) is that the sum of these four products should 
vanish. If we find a place in the Q table where only three of the four numbers of Q 



are actually known, then we can calculate the fourth, unknown number. In fact, 
Q may be given only along a few boundaries in the (z, t) plane and we may be 
able to fill in the rest of the plane. 

Migration and its inverse may be thought of on the following grid. 

On this grid r, , r,, . . . , r4 represents the observed surface seismogram and c,, 
c,, . . . , c4 represents the migrated section. The zeros in the bottom row represent 
the idea that seismograms vanish at a sufficiently late time. Notice that in filling 
in the table there is a lot more work (diffraction) in going from r4 to c4 than in 
going from r2 to c2 . This is because for fixed dip, deep events migrate farther than 
shallow events. Letting ky2 = 0, we have a = 0 and we are describing a stratified 
earth. Starting with surface data r,, r2 , r3 , and r4 and the bottom row of zeros 
we can use (1 1-2-5) to fill in the table (1 1-2-6) and it becomes 

Inspecting the table (1 1-2-7) we see that numbers remain absdlutely constant 
as we move in the z direction. If we had not taken ky2 = 0 but had instead taken 
k; to be small, we would see the numbers in the table changing gradually in the 
z direction. When k: is not zero some caution must be exercised in the order in 
which the (z, t) plane is filled up. The number a is always positive. Obviously, if 
the number a happens to equal + 1, then it will be impossible to find unknown 
numbers in the Q table if they should lie under the multiplier 1 - a. It turns out 
that, regardless of what numerical (positive) value a takes, the process of recur- 
sively seeking numbers in Q which underlie 1 - a will be unstable as is polynomial 



division by a nonminimum-phase filter. One reason is that such a process actually 
is polynomial division but the polynomials are two-dimensional polynomials. These 
complications are all the mathematical manifestations of the physical idea of 
causality. 

From the point of view of solving hyperbolic differential equations it is most 
economical if you can get roughly the same number of points per wavelength 
(typically eight) on each coordinate axis. This means that in the development till 
now we have drastically over-sampled the z axis. The 15" limitation of the Fresnel 
approximation implies that Az could always be taken five times or more coarser than 
u At. The subject of optimal selection of grid spacings is somewhat involved. 
Suffice it to say here that some field data have been migrated satisfactorily at a 
Az/u At ratio as great as 100 with a corresponding reduction in cost. Anyway, for 
the purpose of illustrating the point we will now redraw the section table with twice 
as coarse a sampling on the z axis. Numbers in the two tables below indicate two 
different possible orderings, both causal, of the use of (11-2-5) for the migration 
calculation. In either case the resulting migrated section is interpolated (perhaps 
very crudely) off the diagonal. 

t t +  
z-outer t-outer 

The reader should check in each of the above tables that the number computed 
at any stage is based on three already known table entries and that the unknown 
being computed multiplies (1 + a) and not (1 - a). To synthesize data from a 
hypothetical depth section the calculation proceeds in reverse numerical order. 

Study of the two optional procedures (1 1-2-7a) and (1 1-2-76) reveals that the 
one labeled " t-outer" has an extraordinary advantage over the one labeled 
" z-outer " in the much smaller computer memory requirement. 

Another practical reality is the need to be able to handle depth-variable 
velocities. This can be achieved by taking the migrated data c,, c, , . . . , not from 
the diagonal in the (2, t)  plane, but from another curve through the (z, t )  plane as 
illustrated in Fig. 11-13. A nice feature of wave-equation migration is that velocity 
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FIGURE 11-13 
Plane for migration with depth-variable 
velocity. The curve in this plane is 
chosen to be the curve of two-way ver- 
tical travel time. The midpoint axis y 
comes out of the page. Section data 
along the curve may be projected to 
either the z axis or the t axis creating 
a migrated depth section or a migrated 
time section. 

readjustment may be easily made without having to redo the calculation. Once the 
(2, t) plane has been filled, it is just a question of deciding which curve to display. 

Dips in the (2, t )  plane tend to be small. This means that changes in the 
velocity model, i.e., the curve in Fig. 11-13, result in more exaggerated changes to 
the migrated depth section than to the migrated time section. For such reasons 
the migrated time section is often preferred by data interpreters over the migrated 
depth section. 

A final factor to consider is the possibility of lateral y variations in the velocity 
v. Although a detailed analysis has not been given, it seems clear that simply 
inserting a y-variable velocity into (11-2-1) should give a valid technique if the 
velocity does not change too rapidly in the y direction. How much change is too 
much is a question which is undoubtedly data-dependent and beyond the scope 
of our present efforts. It should be noted, however, that if a y-dependent velocity 
is to be used, then Fourier transformation over the y axis does not reduce (1 1-2-1) 
to (1 1-2-2). As a result of this, it is then necessary to regard every element in the 
(2, t) table not as a scalar but as a vector whose different components arise from 
different locations along the y axis. We then regard 1 + a not as a scalar divisor 
but as a tridiagonal matrix of the form (I - a,,) which must be inverted. This 
creates no practical difficulty at all and is, in fact, the way the figures in  this section 
were created. 

11-3 VELOCITY ESTIMATION 

Previous chapters focused on the task of delineating earth structure. Mathemati- 
cally this has meant that we have taken the material velocity as known (and, for 
convenience, constant) but the impedance as having unknown discontinuities at 
interfaces of unknown shape between geologic structures. Now we seek to find the 
material velocity. Traditionally this has been done by assuming the earth structure 
consists of plane horizontal layers. Then the material velocity is deduced from the 
offset-dependent time shift (called the normal moueout correction or NMO) which 
best flattens the events on the common midpoint gathers. In this section, it will be 
shown how the assumption of flat layers may be eliminated. We will see how 



velocity can be estimated even in an earth consisting of random point scatterers. 
This can be expected to be useful in fractured zones or even perhaps in " no record " 
areas. An NR or no record area is one where the best-processed section shows no 
coherence along the midpoint y coordinate. An area may be NR not only because 
of poor data quality but also because the geologic structure itself has no con- 
tinuity. But, as we will see, there is no theoretical reason why material velocity 
cannot be determined in such an NR area. 

Basically, the procedure is to downward-continue both the theoretical down- 
going wave and the observed upgoing wave. They are projected back down to the 
reflectors where their nearly constant ratio should represent the reflection co- 
efficient as a function of offset. If they are projected downwards with an incorrect 
velocity, the ratio will be an oscillatory function of offset. The task, then, is to find 
the velocity which gives the best fit of the two waves. It does not matter whether 
the reflectors have any Iateral continuity or not because the fitting is done for 
variable offset at a fixed midpoint at the reflector depth. When reflectors have no 
lateral continuity they may be called scatterers. An earth model with randomly 
located scatterers would produce migrated seismic data which was a random 
function of (moveout-corrected) time and midpoint but which was a constant 
function of offset. 

It is easy to think of a good means to downward-continue the downgoing 
waves. From the shot point these waves expand spherically. For a homogeneous 
medium, we can just write down an analytic solution. For a moderately inhomo- 
geneous medium, we can use the methods of earlier chapters. One problem is that 
the approximation Q,, = 0 restricts validity to angles of about 15" from the vertical. 
This is easily improved by transforming from cartesian (x, z) coordinates to polar 
(r, 8) coordinates. The approximation Q,, z 0 requires rays to stay within 15" of a 
radius line. Obviously a " stratified media coordinate frame" could be designed to 
handle even stronger velocity inhomogeneity of that type. 

The problem which is more difficult is to find a good coordinate system for the 
upcoming waves. It took me two years to come up with a practical solution. 
A hint is provided by observing why, for the downgoing wave, the polar system is 
preferable to the cartesian system. For a quasi-spherical wave Q,, will be nearly 0, 
whereas Q,, gets large quickly unless you are directly under the source. Because 
we deal with equations like Q,, = Q,, or Q,, = Q,,/r2, this means that Q, will 
generally be small; whereas Q, is small only on the z axis directly under the source. 
Consequently, the approximation Q,, = 0 is much better than Q,, z 0. Our obser- 
vation is that the advantage of the (r, 8) coordinates is that the downgoing wave 
D(r, 8) is nearly independent of the lateral 8 coordinate. What we need is a coordi- 
nate frame in which the upcoming wave U is nearly independent of the lateral 
coordinate. Experienced geophysicists will immediately recognize that normal 
moveout-corrected data fill this requirement. Normal moveout (NMO) correction 
is a compression of the time axis on far offset seismograms intended to make the 
far offset waves arrive at the same (NMO corrected) time as the vertically incident 
waves. Thus, the partial derivative of the wave field Q with respect to shot-geophone 
offset at a fixed NMO corrected time should be small. 

The closer our data come to those from flat horizontal reflectors in an earth 



FIGURE 11-14 
Geometry for normal-moveout correction of downward-continued data. 

of known velocity the smaller the offset derivative will be. The purpose of a wave 
equation is to handle the departure from such an idealized situation. 

This compression of the time axes of the far offset seismograms is really a 
coordinate change. The usual definition of NMO correction does not anticipate 
our desire to project our geophones deeply into the earth. As we project our geo- 
phones downward along a ray path we will retain the surface midpoint y and the 
surface half-oflset h =f /2  as lateral coordinates of the wave field. Lateral deriva- 
tives of idealized data should vanish. 

Figure 11-14 shows the geometry for normal moveout correction of downward- 
continued data in homogeneous media of velocity G. The transformation from 
interpretation variables to observation variables is 

(d2 + h2)'l2(2d - Z)  
t(h, y, d, 2 )  = (1 1-3-lc) 

dii 

Either algebraic or geometric means yield the inverse transformation 



That (1 1-3-2) is indeed inverse to (1 1-3-1) is readily checked by substituting (1 1-3-1) 
into (1 1-3-2). 

In a homogeneous medium of velocity u" we may write the solution for the 
downgoing wave as a delta function on an expanding circle 

The upcoming wave U will be computed in the (h, y, d, z) variables and we want to 
compare it to the downgoing wave D, expressed by (1 1-3-3) in (g, s, t, z) variables. 
We can convert D to (h, y, d, z) variables by substitution of (1 1-3-1) into (1 1-3-3); 
a meaningful simplification arises if we assume the medium velocity u" equals the 
moveout coordinate frame velocity 6. We get 

In this case, the downgoing wave turns out to be independent of the lateral co- 
ordinates h and y. 

Now let us consider an earth model which contains only a single point scat- 
terer located at (x,, 2,). This scatterer is illuminated by a delta function source 
located at (s, 0). Excluding horizontally propagating waves, we have for the 
upcoming wave U(s, g, t ,  z) an infinitesimal distance above the scatterer 

Substituting the transformation (1 1-3-1) at z = d into (1 1-3-5), we obtain 

The existence of 6(y -xo) allows us to set y = xo in the other delta function, 
getting 

U(h, y, d, z = d) = 6(y - xo)6(d2 - zO2) 

We now see the central concept that the wave at the reflector in moveout corrected 
coordinates is indeed independent of the half-offset h. Obviously, the super- 
position of a random collection of point scatterers will create a migrated wave field 
which is random in y and d but still constant in the offset h. Indeed, the concept 
would also seem to be valid even if the scatterers were randomly distributed out of 
the plane of the section. In three-dimensional space it is only necessary to regard 
z as the radial distance from the traverse Iine. 

The purpose of all this is to estimate velocity; but velocity is needed for the 
first step, namely the migration. Use of an erroneous velocity in the migration 
prevents total collapse to a delta function on the midpoint axis. This causes some 
destructive interference between adjoining midpoints representing some informa- 
tion loss for a random scatterer model but it is of no consequence in a layered earth 
model (where even the migration itself is unnecessary). 

Stephen M. Doherty [Ref. 371 made a calculation to illustrate these concepts. 
Figure 11-15 shows an earth model. Figure 11-16 shows surface data and down- 
ward-continued data for the model. 

From the point of view of velocity determination, it is immaterial what co- 
ordinate frame is used to downward-continue the observed waveforms. However, 
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FIGURE 11-15 
An earth model 
locity analysis 
tinued data. 

used to illustrate ve- 
with downward-con- 

FIGURE 1 1-1 6 
Surface data and downward-continued data for the model of Fig. 11-15. The 
coordinates are designed to display three-dimensional data (y, h, d) on a two- 
dimensional page. The vertical axis, as usual, is the d coordinate. For the hori- 
zontal axis the h coordinate has been sampled at six values of h which are displayed 
together in groups (common midpoint gathers). There are ten of these gathers 
spaced along the y axis. Within each group h = 0 is on the left and h,,,, cor- 
responding to about 45" rays, is on the right. The left-hand frame shows the 
surface data and the right-hand frame shows the data down at the reflectors. 
At the reflectors we see horizontal alignment of waveforms indicating that the 
data are independent of offset h. 



it is convenient to downward-continue these waves in the NMO coordinate frame. 
This proceeds in a fashion similar to that in our earlier work. To simplify the alge- 
bra, first note that (1 1-3-2b) and (1 1-3-2c) imply that 

The wave equation 

in NMO coordinates will take the form 

[(d,d, + Y g a y  + ka3' + + 4% + Y z a y  + hz4l2  

As before, when we square these partial differential operators we will take the 
coefficients to be constant. This is the high frequency assumption that the wave 
field changes more rapidly than the coordinate frame. Before we compute all the 
required derivatives we define a simplifying combination b where 

The required derivatives are computed, recalling (1 1-3-6) to be 

First we quickly discover that if moveout-correction velocity fi equals media 
velocity fi, say fi = 5 = v, then three of the terms in (1 1-3-8) vanish identically. By 
direct substitution, the reader may verify that 
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Next, we obtain the three cross terms with 8,. 

g - s  h 
2yz Qyz = - = - (1 1-3- 12a) 

bQyz dQyz 

2dz Qdz = Qdz (1 1-3-12c) 

From (1 1-3-6) we realize that the coefficients of Q , Qhh, and 2QYh are identical. 
YY 

Through a considerable amount of algebraic reduction we obtain 

2 d 
(Y,' + Y ,  2 - k ) ( a y + a h ) 2 ~ =  v2 - (c-2(l + $ ) ( " + i d 2 ~  (11-3-13) 

As usual, we make the Fresnel-like approximation by dropping the Q,, term. In 
cartesian geometry, this limits accurate treatment of rays to within a cone of about 
15" of the vertical. In the NMO geometry, this would seem to be more like a 15" 
limitation on structural dips. Of course, the higher-accuracy techniques can always 
be used where required. Gathering (1 1-3-1 1) to (1 1-3-13) together, we obtain the 
basic result 

Equation (1 1-3-14) may be used for downward continuation of moveout-corrected 
unstacked sections for velocity determination. 

It seems worthwhile to inspect (1 1-3-14) in some special cases. At the surface 
for zero offset Qh vanishes by symmetry. At a point scatterer we saw that Q was 
independent of h. For idealized data from layered reflectors Q is a function of d 
only. In a wide variety of practical situations it turns out to be reasonable to simplify 
(1 1-3-14) with Qd 9 Q, % Q,. This leaves us with 

It seems natural to wonder about the variable coefficient dl(2d - z) in comparison 
to the earlier equations with constant coefficients. We can now show that with 
regard to migration that there is no practical difference. Define a new variable 

Note that at the surface z = 0 we have z' equal to zero and at the reflectors z = d 
we have z' = d. Thinking of Q(z, d) = Q'(zt, d) we find 



With these, the left-hand side of (1 1-3-15) becomes 

In a Fresnel-like approximation, we drop obtaining 

which reduces (1 1-3- 15) to 

Q,, (11-3-17) 

To justify the factor of 2 which was asserted in Sec. 11-2, we may make another 
transformation from d to a two-way travel-time coordinate t' given by 

which gives 

Of course (1 1-3-18) must be integrated from 2' = 0 to z' = t1v'/2. A convenient 
rescaling of the depth axis is in terms of two-way travel time t" where 

This leads to the equation 

in which t' is the two-way travel time and t" is the two-way travel-time depth axis 
which is integrated from the surface t" = 0 to the reflectors at t" = t'. 

Strictly speaking, (1 1-3-19) should be applied separately to data of each offset 
h before the data are summed over offset (stacked). For reasons of economy, the 
data are often stacked before migration with (11-3-19). In such a compromise, 
h in (1 1-3-19) is taken as zero or some average value of 2h/ut1 is used. 

So far, we have shown that downward-continued, moveout-corrected seismo- 
grams will be independent of offset if downward continued with the correct 
velocity. What we have not seen is how to estimate the velocity error from the 
downward-continued data. For this we must recognize another important term 
which has been omitted from the entire analysis. We saw this term in earlier 
studies of propagation in inhomogeneous media. We must carry through the dis- 
tinction between media velocity c ( ~ ,  z) and NMO velocity 6 [generalizable to 
6(z)] which was abandoned for the sake of the simplifications beginning at (1 1-3-1 1). 
Recalling that for small departu~es from layered models, Qd 9 Q, 9 Q,, we see 



that the first of the three terms in (1 1-3-1 1) will be the most important. Making the 
distinction between the two velocities, (11-3-lla) now introduces the significant 
term 

Thus, with this new term but the other approximations, (1 1-3-15) becomes 

Numerically, we can consider solving (1 1-3-22) by a splitting method where the 
solution is projected downward by alternate use of the two equations 

Equation (1 1-3-23a) may be called the " diffraction" part and (1 1-3-233) may 
be called the " thin-lens " part. The effect of (1 1-3-23b) is that as Q is projected in 
the z direction, each seismogram [a seismogram is a function of (moveout-cor- 
rected) time d at a fixed half-offset h and midpoint y ]  undergoes a steady time shift 
(d shift). The amount of the shift increases with the velocity error according to 
1 - v2/c2 and it increases with offset according to 1 + h2/d2. Thus, the effect of 
(11-3-238) is to change the curvature of the data with half-offset h. However, 
(11-3-23a) contains Qyy but it does not contain Qh or Qhh. This means that the 
operations of (1 1-3-23a) and (1 1-3-23b) commute. Thus, we can project all the way 
down to the reflectors with (11-3-23a) and then use (11-3-233). It is significant 
that the hard part of the job, namely (1 1-3-23a), depends on the frame velocity u, 
not the material velocity u". This means that we can rather economically test 
various media velocities u". 

Before we can consider the task of selecting our best estimate of the media 
velocity u", we must consider matching the upcoming wave U to some reflection 
coefficient c multiplied by some downgoing wave D. The matching of these waves 
can be done in the field-recording coordinates, but we prefer to do the matching in 



the NMO coordinate system. First, let us get an expression for the downgoing 
wave in NMO coordinates. Insert (1 1-3-1) into (1 1-3-3) to obtain 

At present, we are not trying to preserve slow magnitude variations [spherical 
spreading was omitted from (11-3-3)], so we can divide through the argument of 
the delta function by -4d. Since we are interested in small amounts of variation 
of 6 from ij the delta function will vanish very near to z = d. Thus, to a good 
approximation we can substitute z for d i n  the coefficient of (1 - c2/ij2), obtaining 

where we have defined a time (d) shift function 

Now let us return to the task of matching the up- and downgoing wave. We 
might hope to determine a reflection coefficient, along with some angular depend- 
ence, in the form of a power series, for example: 

To simplify the sequel we will estimate only the constant term c, by the minimi- 
zation 

min 1 1 [U(Y, 2, h, d) - C(Y, z)D(Y, 2, h, d)12 (1 1-3-28) 
c h d  

The solution is obviously 

Because D vanishes almost everywhere, we can gain insight by replacing the double 
sum by a single sum, specifically for the numerator 

Numerator = x x U(y, z, h, d) 6(d - z - s) 
h  d  

= x u(y, Z, h, d = z + s(h2, Z, s/a)] (1 1-3-30) 
h  

Letting N denote the number of terms in the offset sum, we get for (1 1-3-29) 



255 FUNDAMENTALS OF GEOPHYSICAL DATA PROCESSING 

Finally, we come to the part of determining the velocity v" which provides the 
best minimum of U - cD. For this, a computer scan over 5 may be used to find 
the minimum 

min z (U - C D ) ~  = min x (U - c ) ~  
ii h d  i i h  

In practice it is found that rather than minimize the sum squared minus the squared 
sum it is preferable to maximize the negative logarithm or the semblance ratio 

Semblance = 
ii 

(' U)2 < 1 (1 1-3-33) 
N x U 2  - 

The ratio has the advantage of being insensitive to the magnitude of the wave U  
and lends itself well to displays over a wide range of conditions. 

11-4 MULTIPLE REFLECTIONS 

Accurate modeling of multiple reflections makes it possible to subtract theoretical 
multiples from field data, thereby uncovering the more informative, primary 
reflections. We will first review a simplified layered model for multiple reflections 
and then modify it for application to a two-dimensionally inhomogeneous earth. 
We plan to solve both forward and inverse problems. The forward problem is 
given the two-dimensional spatial distribution of reflection coefficients to find the 
reflections including diffracted multiples with peglegs. The inverse problem is to 
deduce the two-dimensional spatial distribution of reflection coefficients from the 
waves. 

The basic idea that we use for the inverse problem is that " reflectors exist at 
points in the earth where the first arrival of a downgoing wave is time-coincident 
with an upcoming wave." As a practical matter, we try to choose reflection co- 
efficients which ensure that the upcoming wave vanishes before the onset of the 
downgoing wave. In Chap. 8 we learned that, for a layered medium, the Z trans- 
form polynomial for the downgoing wave D(Z) is minimum-phase. This means 
that the inverse of D(Z), namely l/D(Z), can be expanded into positive powers of Z 
and the lead coefficient will be lld,. Consequently, in the nth layer the reflection 
coefficient at the bottom of the layer is the coefficient of the lowest power of Z in 
the expansion for Un(Z)/Dn(Z). Our plan is to show that Un(Z)/Dn(Z) is observable 
at the surface n = 0, and then show how Un+'/Dn+l can be easily computed from 
Un/Dn. First of all, pressure P and vertical velocity W must be taken as known at 
the surface for all time. 



FIGURE 11-17 
The defining conventions for waves in 
layers being scattered at the nth inter- 

t" 
face. 

From Sec. 9-3 and equations (9-3-12a) and (9-3-12b), we have 

and 

In (1 1-4-1) and (1 1-4-2) we think of the surface n = 0 pressure P0(2) = p ,  as a delta 
function at time t = 0, which is an instantaneous violation of the surface boundary 
condition PO = 0 in order to introduce energy into the medium. This causes a 
delta function behavior in WO at t = 0; and, later on, the reflectors in the earth 
cause W0 to be nonvanishing while PO is vanishing. To apply our present method, 
we will require U0 = +(P - YW) which vanishes until the first echo and then 
becomes the negative of the observed returning waveform Wand Do = +(P + YW) 
which is a delta function at t = 0 followed by the observed waveform. 

Figure 11-17 will recall the conventions of Chap. 8 for scattering at an inter- 
face. For propagation across the layer, we have the obvious delays which become 
multiplication by the half-unit delay operator 2 1 t 2  = exp(iw At/2) = exp(iu, Az/2v). 

We have the scattering of downgoing waves into upgoing waves at the interface 

Now for the theory to be perfectly general, as in Chap. 8, we would write an 
equation converse to (1 1-4-5) which states that downgoing waves are augmented by 
scattering from upgoing waves. However, to achieve simplicity in our first exposure 
to diffracted multiple reflections, we will assume that downgoing waves are gener- 
ated from upcoming waves only at the surface n = 0. Everywhere else in the earth 
we will suppose that downgoing waves go along their merry way without any con- 
tributions from upcoming waves. With this presumption, we write 
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As a practical matter, the assumption we have built into (1 1-4-6) is not a bad 
one for marine data where the free-surface reflector is by far the strongest reflector. 
Although a large range of reflection coefficients is found in practice, a common 
case would be for a sea-floor coefficient of . l  and subsurface coefficients of .Ol. 
With land data, it is often important to account for a lot of absorption and scat- 
tering in the near-surface layers. 

Anyway, eliminating the D' and U' variables from (1 1-4-3) to (1 1-4-6), we 
obtain 

~ n + l  - - t f ~ 1 / 2 ~ 1 1  (1 1-4-7) 

Dividing (1 1-4-8) by (1 1-4-7), we achieve a simple relationship for the downward 
continuation of U/D. It is 

To understand this simple recurrence relationship we must recall that the coeffi- 
cient of Z0 in Un/Dn vanishes (see Fig. 11-17) and that the coefficient of Z in Un/Dn - I is c, = -cn. Thus, the 2 - I  multiplier in (1 1-4-9) shifts Un/Dn to have -cn as the 
coefficient of 2' and then the c, in (1 1-4-9) extinguishes it. Clearly, the downward 
continuation is so simple that the results can almost be seen as the coefficients of 
the surface ratio uO(Z)/DO(Z). The only complicating factor is the divisor tit, 
which gives a monotonically increasing scale factor of l /n ;= ,  (1 - ck2) to the 
coefficient of Zn in uO(Z)/DO(Z). 

Now let us see how we can generalize these layered-model ideas to a two- 
dimensionally inhomogeneous earth. The big difference is that upward and down- 
ward continuation of waveforms can no longer be accomplished simply by the delay 
operator 2. We could use (10-5-16) for upward and downward continuation; 
however, it seems more natural and certainly more economical to use (10-5-17a) 
and (10-5-18) which are 

Equations (11-4-10) and (11-4-11) may be compared with (11-4-7) and (11-4-8). 
It is apparent that transmission coefficients are not accounted for in (1 1-4-10) and 
(1 1-4-1 1). That is the sort of thing which is usually unimportant in the analysis of 
field data, but which can be recovered by a more exhaustive derivation if necessary. 



First, we will consider the forward problem. It is easier to understand in a 
finite difference notation than in the differential equation system (11-4-10) and 
(11-4-1 1). Let us define a matrix T which is a tridiagonal matrix because of the 
second-difference operator ax, 

Then (1 1-4-10) with the boundary condition that D vanishes before t ' = 0 can be 
written in tabular form 

where * denotes convolution in the (z, t') plane. This table can be filled in by the 
knowledge of the zeros in the top row and the surface observations in the left 
column. We will do the forward problem by illustrating a typical step. Suppose 
both U and D are known for all z before t = 4 but not at or after t = 4. ,The typical 
step we will show is how to get U and D at t = 4. That means we know everything 
entered in the D table (1 1-4-13) except for d40. The first step is to take D from the 
t' coordinate in (1 1-4-1 3) to the t" coordinate. If Az = ij At/2, this is achieved by 
downshifting successive columns in (1 1-4-13) to 



The meaning of the t" coordinate is that if reflection occurs, all elements on a given 
row of constant t" can contribute to the upcoming wave received at a surface 
arrival time t". Equation (1 1-4-11) may be rearranged to 

(i a, + a,,) ( - u) = c'(x, z)a,D (1 1-4-1 5 )  

which can be expressed in tabular form as 

In the tabular equation (1 1-4-16) the unknown elements have been left blank. On 
the right-hand side the reflection coefficients are to be convolved upward into the 
downgoing wave to create the sources for the upgoing wave. The co entry in the 
reflection coefficient row is set at zero because we will prescribe the boundary con- 
dition dtO = -utO separately. Thus, we see the right-hand side of (11-4-16) is 
completely known, and the unknowns in the left-hand side may be filled in from 
right to left, thereby computing the upcoming wave table at t" = 4 for all z. This 
gives d,', enabling us to go back and fill in another row in the downgoing wave 
table which enables us to fill another row in the upgoing wave table, ad infinitum. 

The inverse calculation proceeds in a similar fashion. Suppose dtO is known 
for all t and we wish to calculate c; , ci , etc., in a recursive fashion. It is sufficient 
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to show how to compute c;. Suppose we skim off the two left-hand columns of 
(1 1-4-16). We get 

In (1 1-4-17) all the boxes filled by g on the left are given. The boxes with g on the 
right are readily computable as before. If c; were known, it would be a straightfor- 
ward task to compute successively . . . , e3 , e, , el, eo . We would be compelled to 
initialize the computation with an approximation such as e, = 0 for some large N. 
If the correct value of c;  had been used, then we should find that eo vanishes. Since 
we do not know what value of c; to use, we try c; = + 1 obtaining e,f and we try 
c; = - 1 obtaining e, . The correct value of c;  is the appropriately weighted linear 
combination 

where 

which inverts to 

reducing (1 1-4- 18) to 

or 
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FIGURE 1 1-1 8 
The left-hand frame is the reflection-coefficient model of a two-dimensional 
earth. It consists of an undulating sea floor underlain by a faulted, dipping 
structure. The horizontal line near the bottom of the frames is the one-second 
timing line. A uniform exponential gain has been applied to all three frames 
for display purposes. The vertical exaggeration is 5 on all frames. The center 
frame is the synthesized time section. Below the sea floor are seen the sea-floor 
multiples. Below the faulted, dipping structure are the pegleg multiples. The 
right-hand frame is the attempted reconstruction of the original model. 

Thus, the idea which we have used to compute c; is the principle that the upgoing 
wave at depth z, (which is e,) must vanish before the onset of a downgoing wave 
at z,. 

A number of practical difficulties must be overcome before realistic behavior 
can be expected of either the one-dimensional- or the two-dimensional algorithms 
which were presented. First of all is the problem of the source spreading out in 
three dimensions. This calls for a spherical spreading correction. Luckily, since the 
main idea involves a ratio between up- and downgoing waves, the true amplitude 
does not seem to be very important. In fact, the calculation may be shown to be 
invariant under exponential gain readjustment. One real problem which does arise 
is that the amplitude of the initial shot delta function cannot be properly measured 
and it is required for the calculation. In fact, there is a shot waveform to be ac- 
counted for which may also have a slight timing error due to residual moveout. 
Luckily, the shot waveform can be calibrated in deep water where the sea floor is 
flat. Say at such a place the returned wave is scaled to zero everywhere except 
around the sea-floor primary reflection; call this daveform P. Also, another wave- 
form M is created by weighting the returned wave to 0 everywhere except around 
the first multiple. Ideally, P convolved onto itself should give M;  the departure 
allows estimation of shot amplitude, timing, and waveform. 

A fact to realize is that strong reflective interfaces may not fall precisely on a 
sampled data point. This means that (4, O), (3, I), (2, 2), (1, 3), and (0,4) must all 
be regarded as successive delays of the same impulsive waveform. The problem 
that their spectra differ at high frequencies is the same type of problem as dif- 
ferential equations departing from difference equations for wavelengths shorter 



than about ten sample points. There is no need to model the high frequencies 
accurately; just be sure to sample the data densely enough. The real problem with 
high frequencies is keeping them from causing instability. For example, in the 
calculation of uOIDO = - W(Z)/[~ + W(Z)] it is first necessary to estimate the @ 
which would be recorded if the shot P/I  had been an ideal delta function. Naturally, 
the high frequencies in w are rather meaningless. The only reason you care about 
them is that they should not be such as to make 1 + ~nonminimum-phase which 
would prevent the division. In this case, the high frequencies can be filtered out 
from @ and the divisor will tend toward a positive real function. Don C .  Riley 
[Ref. 381 has established that these various practical difficulties can be overcome 
and Fig. 11-18 shows an example of one of his calculations. 
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