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If we want to fi nd the integral y (nT  ) of a function (e.g., a signal) 
x(t) over [0, nT  ], we would solve
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If we want to find the integral y(nT ) of a function (e.g., a signal) x(t) over [0, nT ], we
would solve

y(nT ) =

� nT

0

x(t) dt . (1)

But what if the integration cannot be carried out exactly? Or what if x(t) is known at
only a finite number of points x(0), x(T ), x(2T ), . . . , x(nT ) (i.e., x(t) has been sampled and
we have knowledge only of the values of the resulting sequence x[k] = x(kT ), k = 0, . . . , n,
where T is the sampling interval)? In situations such as these, we would use numerical
integration (or, numerical quadrature) to estimate the number obtained if we could carry
out (1).

You may recall from elementary calculus the notion of a Riemann sum to approximate
the integral. One form of this approximation is

y(nT ) ≈

n
�

k=1

x(kT )∆t =

n
�

k=1

x[k]T .

Indeed, if x(t) is piecewise continuous and we fix the interval of integration and then
let n → ∞ (making T successively smaller in the process), we arrive at the Riemann
integral. In effect, this is, in fact, how the Riemann integral is defined.

Integration is a smoothing operation, and numerical integration is, in its essence,
a stable operation. Many formulas (or rules) exist. The most basic of these is the so-
called rectangular rule, which effectively amounts to a Riemann sum with finite n (or,
equivalently, fixed T ). Perusal of any elementary text on numerical analysis would uncover
several other classical formulas, such as the trapezoidal rule and Simpson’s rule. Some other
rules include the midpoint rule, the corrected trapezoidal rule, Tick’s rule, Simpson’s three-

eighths rule, and Bode’s rule. And the list goes on.

While some would argue that basic rules such as these are generally of only historical
interest, with the possible exception of extended (or composite) versions of the simpler
formulas, comparing various of the rules can help develop intuition. And, besides, there
indeed remain situations, especially in various instrument designs, that beg for the imple-
mentation of some of these basic integration rules.
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(1)

But what if the integration cannot be carried 
out exactly? Or what if x(t) is known at only a 
finite number of points x(0), x(T  ), x(2T  ), …
, x(nT  ) (i.e., x(t) has been sampled and we 
have knowledge only of the values of the 
resulting sequence x[k] = x(k T  ), k = 0, …, n, 
where T is the sampling interval)? In situa-
tions such as these, we would use numerical 
integration (or, numerical quadrature) to 
estimate the number obtained if we could 
carry out (1).

You may recall from elementary calculus 
the notion of a Riemann sum to approximate 
the integral. One form of this approximation 
is
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Indeed, if x(t) is piecewise continuous and 
we fi x the interval of integration and then let 
n ! 1 (making T   successively smaller in the 
process), we arrive at the Riemann integral. In 

effect, this is, in fact, how the Riemann integral is defi ned.
Integration is a smoothing operation, and numerical inte-

gration is, in its essence, a stable operation. Many formulas (or 
rules) exist. The most basic of these is the so-called rectangular 
rule, which effectively amounts to a Riemann sum with fi nite n 
(or, equivalently, fi xed T  ). Perusal of any elementary text on nu-
merical analysis would uncover several other classical formulas, 
such as the trapezoidal rule and Simpson’s rule. Some other rules 
include the midpoint rule, the corrected trapezoidal rule, Tick’s rule, 
Simpson’s three-eighths rule, and Bode’s rule. And the list goes on.

While some would argue that basic rules such as these are 
generally of only historical interest, with the possible excep-
tion of extended (or composite) versions of the simpler formu-
las, comparing various of the rules can help develop intuition. 

And, besides, there indeed remain situations, especially in 
various instrument designs, that beg for the implementation 
of some of these basic integration rules.

Numerical Integration as Recursive Digital 
Filtering
Although only a rare text on numerical analysis presents it as 
such, numerical integration can be modeled as a digital fi lter-
ing operation. (Hamming’s [1] is such a text, and we use his 
presentation and results as inspiration for what follows.)

For our purposes here, we will consider, along with true, or 
ideal, integration, the following rules for numerical integration: 
The rectangular rule, the trapezoidal rule, Simpson’s rule, and a 
rule similar in form to Simpson’s, called Tick’s rule [1]. We will 
treat these numerical-integration rules as the recursive—or in-
fi nite-impulse-response (IIR)—digital fi lters they are, defi ning 
them by the respective difference equations that describe them.

Since they are linear, time-invariant digital fi lters, we can 
further describe each in terms of its transfer function, its im-
pulse response, and its frequency response. (We will fi nd each 
of these for the trapezoidal rule, and leave it to the reader to do 
similarly for the remaining numerical-integration rules.)

Once the frequency responses of the various integrators 
have been found, we can easily make comparisons, in the fre-
quency domain, of their relative performance.

In all that follows, we will, with no loss of generality, nor-
malize the sampling interval T to unity (i.e., 1 second, if the 
independent variable t represents time). Thus, the sampling 
frequency fs = 1/T is likewise unity (1 Hz), and the Nyquist 
frequency fN is then 0.5 Hz.

Difference Equations for the Various Rules
The difference equations describing the four numerical-inte-
gration rules considered are as follows:

Rectangular Rule. With the rectangular rule, the estimate of 
the integral y [n ] at sample point n of the sampled function 
x [n ] depends only on the estimate of the integral at the 
previous sample and the value of the function at the current 
sample. Specifi cally, the difference equation (again, with 
the sampling interval taken to be T = 1) is

Numerical Integration as Recursive Digital Filtering

Although only a rare text on numerical analysis presents it as such, numerical inte-
gration can be modeled as a digital filtering operation. (Hamming’s [1] is such a text, and
we use his presentation and results as inspiration for what follows.)

For our purposes here, we will consider, along with true, or ideal, integration, the
following rules for numerical integration: The rectangular rule, the trapezoidal rule, Simp-
son’s rule, and a rule similar in form to Simpson’s, called Tick’s rule [1]. We will treat these
numerical-integration rules as the recursive—or infinite-impulse-response (IIR)—digital fil-
ters they are, defining them by the respective difference equations that describe them.

Since they are linear, time-invariant digital filters, we can further describe each in
terms of its transfer function, its impulse response, and its frequency response. (We will
find each of these for the trapezoidal rule, and leave it to the reader to do similarly for the
remaining numerical-integration rules.)

Once the frequency responses of the various integrators have been found, we can easily
make comparisons, in the frequency domain, of their relative performance.

In all that follows, we will, with no loss of generality, normalize the sampling interval
T to unity (i.e., 1 second, if the independent variable t represents time. Thus, the sampling
frequency fs = 1/T is likewise unity (1 Hz), and the Nyquist frequency fN is then 0.5 Hz.

Difference Equations for the Various Rules

The difference equations describing the four numerical-integration rules considered are
as follows:

Rectangular Rule. With the rectangular rule, the estimate of the integral y[n] at
sample point n of the sampled function x[n] depends only on the estimate of the
integral at the previous sample and the value of the function at the current sample.
Specifically, the difference equation (again, with the sampling interval taken to be
T = 1) is

y[n] = y[n − 1] + x[n] . (2)

Trapezoidal Rule. The trapezoidal rule adds the area under the trapezoidal element
established by x[n − 1] and x[n] on the nth interval to the estimate y[n − 1] of the
integral obtained up through the (n − 1)th interval. The difference equation is

y[n] = y[n − 1] +
1

2
x[n] +

1

2
x[n − 1] . (3)
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(2)
Trapezoidal Rule. The trapezoidal rule adds the area under 
the trapezoidal element established by x[n { 1] and x[n]
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on the nth interval to the estimate y [n  { 1] of the integral 
obtained up through the (n  { 1)th interval. The difference 
equation is
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ters they are, defining them by the respective difference equations that describe them.

Since they are linear, time-invariant digital filters, we can further describe each in
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Simpson’s Rule. The trapezoidal rule is a two-point formula 
giving exact results when the function being integrated is a 
polynomial of degree one. Simpson’s rule is a three-point 
formula giving exact results, it turns out, when integrating 
not only polynomials of degree 2 but also polynomials of 
degree 3. The difference equation is

Simpson’s Rule. The trapezoidal rule is a two-point formula giving exact results when
the function being integrated is a polynomial of degree one. Simpson’s rule is a three-
point formula giving exact results, it turns out, when integrating not only polynomials
of degree 2 but also polynomials of degree 3. The difference equation is

y[n] = y[n − 2] +
1

3
x[n] +

4

3
x[n − 1] +

1

3
x[n − 2] . (4)

Tick’s Rule. Another three-point formula, described in [1] and attributed to Leo Tick,
is described by the difference equation

y[n] = y[n − 2] + 0.3584x[n] + 1.2832x[n − 1] + 0.3584x[n − 2] . (5)

This rule has a nice spectral property that we will note shortly.

Example: The Trapezoidal Rule

We now find the transfer function, the impulse response, and the frequency response
of the trapezoidal rule.

Transfer Function

The Z-transform (ZT) of (2) yields

Y (z) = z−1Y (z) +
1

2

�

X(z) + z−1X(z)
�

,

from which we can write the transfer function H(z) as

H(z) =
Y (z)

X(z)
= 0.5

z + 1

z − 1
. (6)

(For those of you who remember your linear-systems theory: Is this filter stable, marginally
stable, etc.?)

Impulse Response

The impulse response h[n] can be found as the inverse ZT (IZT) of the transfer function
H(z). Expanding H(z)/z into partial fractions yields

H(z) = −0.5 +
z

z − 1
, (7)

from which we can find the IZT as

h[n] =

�

0.5, n = 0

1.0, n > 0 ,
(8)

which is the impulse response associated with the trapezoidal rule.
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This rule has a nice spectral property that we will note 
shortly.

Example: The Trapezoidal Rule
We now find the transfer function, the impulse response, and 
the frequency response of the trapezoidal rule.
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(8)

which is the impulse response associated with the trapezoidal 
rule.

Frequency Response
In obtaining the frequency response, we first recall the La-
place-transform variable (i.e., the complex-frequency variable)  
s   =  ¾ + j! and the mapping to the z-plane, z = e s T, where, 
again, T   is the sampling interval.

To obtain the frequency response of a continuous-time (CT) 
system, we evaluate the transfer function H(s ) at s  =  j !  . For a 
discrete-time (DT) system, we then have

Frequency Response

In obtaining the frequency response, we first recall the Laplace-transform variable
(i.e., the complex-frequency variable) s = σ+ jω and the mapping to the z-plane, z = esT ,
where, again, T is the sampling interval.

To obtain the frequency response of a continuous-time (CT) system, we evaluate the
transfer function H(s) at s = jω. For a discrete-time (DT) system, we then have

z = esT
�

�

�

s=jω
= ejωT .

So the frequency response of the DT system is

H(z)
�

�

�

z=ejωT
= H(ejωT ) = H(ω)

= H(ej2πfT ) = H(f)
(9)

Applying (9) to (6), with T = 1, we find the frequency response for the trapezoidal
rule to be

H(f) = 0.5
ej2πf + 1

ej2πf − 1

=
1

j2

cosπf

sinπf

=
1

j2
cotπf .

(10)

Relative Performance

How does a given numerical-integration rule act, at a particular frequency, in com-
parison with true integration? To answer that question, we simply need to take the ratio
H(f)/Htrue(f) of the frequency response of that numerical integrator to that of a true
integrator and plot the ratio over the Nyquist interval.

Recall that a true integrator has as its transfer function Htrue(s) = 1/s. Its frequency
response is then

Htrue(f) =
1

j2πf
. (11)

For our example of the trapezoidal rule, the ratio is thus

H(f)

Htrue(f)
= πf cotπf . (trapezoidal rule) (12)
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Equation (12) tells what the trapezoidal rule does at frequency 
f with respect to a true integrator—whether it accentuates or 
plays down that spectral component in the function whose 
integral is being estimated.

Another way of looking at the ratio 

Equation (12) tells what the trapezoidal rule does at frequency f with respect to a true
integrator—whether it accentuates or plays down that spectral component in the function
whose integral is being estimated.

Another way of looking at the ratio H(f)/Htrue(f) is as the frequency response of a
linear system that takes the ideally integrated version of the function x(t) being considered
and converts it to the corresponding numerically integrated version.

We note that if the desire is simply to obtain the ratio H(f)/Htrue(f) vs. f for a given
numerical-integration rule, there is no particular need to obtain its frequency response H(f)
in closed form if you have written—or otherwise have available to you—functions such as
ct response( ) and dt response( ) [2] for evaluating frequency responses of CT and DT
systems, given their transfer functions.

Another thing to point out with regard to investigating relative performance is that
some of the numerical-integration rules have phase error with respect to true integration.
(The rectangular rule is one such example.) Thus, when plotting the performance of
various rules, it would be better to graph the magnitude—and, if necessary, the phase—of
H(f)/Htrue(f) vs. f .

Figure 1 shows the magnitude of the ratio H(f)/Htrue(f) vs. f for the four numerical
integrators considered, with the curve corresponding to ideal integration being included
for reference.

Which Integrator to Choose?

Given the results presented, which numerical-integration rule would you choose?
Clearly, from a spectral point of view, all of them should perform well if the energy in
the function to be integrated were confined to frequencies well below the Nyquist (say,
0.05fs). Simpson’s rule more closely matches true integration for a larger range of fre-
quencies, and Tick’s rule does well for an even broader range—from 0 to about 0.25fs.
But, look what happens at higher frequencies. Both of the these rules provide excessive
amplification at frequencies approaching the Nyquist. If the signal being integrated con-
tains significant high-frequency energy (or has high-frequency noise embedded in it), then
the results of applying Simpson’s rule or Tick’s rule could be disappointing at the very least,
and disastrous in many cases. (Apply Simpson’s or Tick’s rule to a signal consisting of a
sinusoid at fN . The samples in the sequence are proportional to [1,−1, 1,−1, 1,−1, . . .].
What happens? This is easy enough to do by hand.)

The rectangular rule similarly provides amplification over true integration for high
frequencies, although it is relatively small—about 4 dB—at the Nyquist, whereas both
Simpson’s rule and Tick’s rule have unbounded amplification at the Nyquist.

The trapezoidal rule, in contrast, provides increasing attenuation with increasing fre-
quency, with the gain reaching zero at the Nyquist frequency. The effects of roundoff,
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Which Integrator to Choose?
Given the results presented, which numerical-integration rule 
would you choose? Clearly, from a spectral point of view, all of 
them should perform well if the energy in the function to be in-
tegrated were confined to frequencies well below the Nyquist 
(say, 0.05fs ). Simpson’s rule more closely matches true inte-
gration for a larger range of frequencies, and Tick’s rule does 
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rule could be disappointing at the very least, and disastrous 

in many cases. (Apply Simpson’s or Tick’s rule to a signal 
consisting of a sinusoid at f N . The samples in the sequence are 
proportional to [1, {1, 1, {1, 1, {1, …]. What happens? This is 
easy enough to do by hand.)

The rectangular rule similarly provides amplification over 
true integration for high frequencies, although it is relatively 
small—about 4 dB—at the Nyquist, whereas both Simpson’s 
rule and Tick’s rule have unbounded amplification at the 
Nyquist.

The trapezoidal rule, in contrast, provides increasing at-
tenuation with increasing frequency, with the gain reaching 
zero at the Nyquist frequency. The effects of roundoff, high-fre-
quency noise, etc., tend to be squashed by the trapezoidal rule, 
in contrast with the other rules considered herein.

The answer to which integration rule to use eventually gets 
back to how much error per step is tolerable. Clearly, the signal 
to be integrated requires considerable oversampling to achieve 
a reasonable small per-step error. Either expanding Figure 1 to 
show more detail over, say,  0  ∙   f  ∙  0.1 fs  , or tabulating the 
values of the various curves over that range will aid in select-
ing an appropriate sampling interval. For example, sampling 
at a rate of 10 times the highest frequency in the function to be 
integrated results in a per-step underestimate of less than 3% 
when the trapezoidal rule is used, an overestimation by less 
than 0.1% with Simpson’s rule, and an underestimation by less 
than 0.4% with Tick’s rule.

References
[1]  R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd 

ed. New York: McGraw-Hill, 1973.

[2]  S. A. Dyer and J. S. Dyer, “System response and passband 

transformations,” IEEE Instrum. & Meas. Mag., vol. 2, no.3, pp. 

43–46, Sep. 1999.

Stephen A. Dyer (s.dyer@ieee.org) has just completed 
his third term as President of the IEEE 
Instrumentation and Measurement Society. 
He is a Professor of Electrical and Computer 
Engineering at Kansas State University and 
is President of Silver Wolf Technologies, Inc., 
where he designs instrumentation. His edited 
book, Wiley Survey of Instrumentation and 
Measurement, published by Wiley–IEEE Press, 
is available as a 1,112-page hardbound volume 
and as an electronic book.

Justin S. Dyer (j.dyer@ieee.org) holds the 
B.S.E.E. and the M.S. in electrical engineering 
from Kansas State University. He recently 
served for two years as the Graduate 
Student Representative to the I&M Society’s 
Administrative Committee and is currently 
a Ph.D. student in statistics at Stanford 
University.

Fig. 1. Ratio 

high-frequency noise, etc., tend to be squashed by the trapezoidal rule, in contrast with
the other rules considered herein.

The answer to which integration rule to use eventually gets back to how much error per
step is tolerable. Clearly, the signal to be integrated requires considerable oversampling to
achieve a reasonably small per-step error. Either expanding Figure 1 to show more detail
over, say, 0 ≤ f ≤ 0.1fs, or tabulating the values of the various curves over that range
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Figure Caption

Fig. 1. Ratio |H(f)/Htrue(f)| of the magnitude response of the numerical integrator
to that of an ideal (i.e., true) integrator for several numerical integrators.
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