Definiciones y Teorema del muestreo en el dominio del espacio Apunte

Definiciones

Longitud de onda	λ	[m]
Frecuencia espacial (frecuencia espacial)	$\kappa=1/\lambda$	[1/m]
Frecuencia espacial angular	$K=2\pi\kappa$	[rad/m]
Intervalo de muestreo	Δx	[m/muestra]
Frecuencia espacial angular $digital$	$\nu = K\Delta x$	$[{\rm rad/muestra}]$

Cuadro 1: Definiciones de muestreo espacial.

Frecuencia espacial de muestreo y Teorema del muestreo

La frecuencia espacial (número de onda) de muestreo se define como la inversa del intervalo de muestreo Δx :

Frecuencia espacial de muestreo	$\kappa_s = 1/\Delta x$
Frecuencia espacial angular de muestreo	$K_s = 2\pi/\Delta x$
Frecuencia espacial angular digital de muestreo	$\nu_s = K_s \Delta x \equiv 2\pi$

Cuadro 2: Frecuencias espaciales de muestreo.

Teorema: Para muestrear satisfactoriamente una señal espacial de banda limitada de frecuencia espacial máxima κ_m por medio de muestras equiespaciada, la frecuencia espacial de muestreo debe cumplir $\kappa_s > 2 \kappa_m$; o lo que es lo mismo, la frecuencia espacial angular de muestreo debe cumplir: $K_s > 2 K_m$.

Frecuencia espacial de Nyquist

Es la máxima frecuencia espacial que es posible recuperar de una señal dado un intervalo de muestreo fijo Δx .

Frecuencia espacial de Nyquist	$\kappa_N = f_s/2 = \frac{1}{2\Delta x}$
Frecuencia espacial angular de Nyquist	$K_N = \pi/\Delta x$
Frecuencia espacial angular digital de Nyquist	$\nu_N \equiv \pi$

Cuadro 3: Frecuencia espacial de Nyquist.

Apunte 1