
Trabajo Práctico Nº 4b

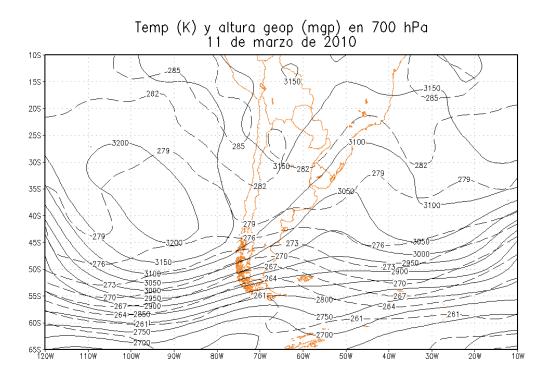
Ejercicios complementarios - TP N° 3 y 4

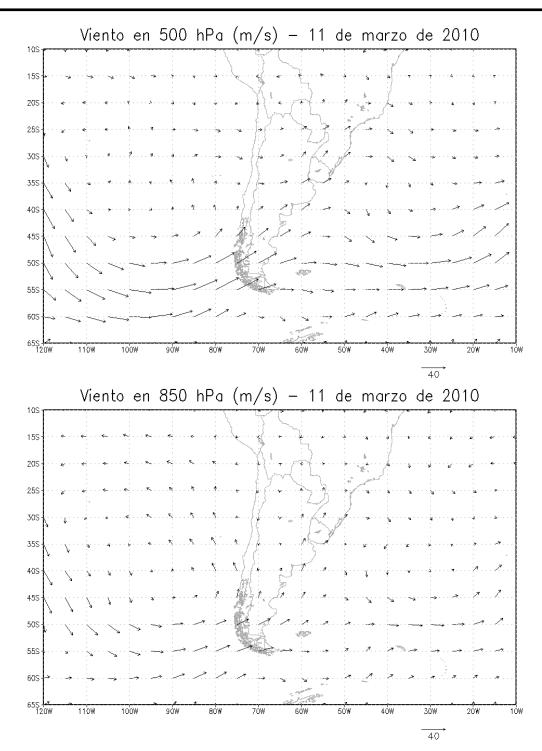
- 1. Considerar dos estaciones meteorológicas A y B ubicadas sobre el mismo paralelo (φ = 60° S) pero a distintas longitudes (λ_A = 45° O; λ_A = 30° O), en las que para un cierto instante se registran los siguientes valores de temperatura y presión: T_A = 10 °C, T_B = 4 °C, p_A = 1028 hPa, p_B = 1024 hPa. Calcular la componente meridional del viento geostrófico para el punto medio de la recta que une las estaciones A y B.
- 2. Considerar dos estaciones meteorológicas C y D ubicadas sobre el mismo meridiano a una latitud de 30° S, distanciadas 370 km entre sí. La presión en C es 993,9 hPa mientras que en D es 997,6 hPa. Si la isobara de 995 hPa está orientada en la dirección NO-SE, ¿cómo es el viento geostrófico que sopla entre C y D? Asumir que la densidad del aire es 1 g/cm³.
- 3. El siguiente mapa muestra valores de altura geopotencial en el nivel de 500 hPa.

a. Indicar la dirección del viento geostrófico y esquematizar el equilibrio de fuerzas de la aproximación geostrófica en los siguientes puntos:

P₁: 50° S 100° O / P₂: 30° S 55° O / P₃: 50° S 65° O

- b. ¿En cuál de los puntos resulta mayor la intensidad del viento geostrófico? Justificar la respuesta.
- c. ¿Cómo sería la trayectoria de una partícula que parte del punto P₁ si sólo se considera la fuerza de presión? ¿Cómo se modifica al considerar la rotación terrestre?


Introducción a la Dinámica de la Atmósfera - 2015


4. En la siguiente tabla se listan valores de variables registradas en un sondeo en Ezeiza (ϕ = 35° S):

Presión (hPa)	T (°C)	Dirección (°)	Intensidad (m/s)
1000	12.3	90	8
700	6.2	45	12
500	-10.8	135	17
250	-40.1	140	60

Graficar V_T y las isotermas medias en las capas (1000/700), (700/500) y (500/250). Analizar cómo es la advección térmica en cada capa y calcularla.

- 5. Los siguientes mapas corresponden al viento en los niveles de 500 hPa y 850 hPa, y a la temperatura y altura geopotencial en 700 hPa para el 11/03/2010:
 - a. ¿Cómo debe ser el campo de temperatura y el de geopotencial para que las advecciones térmicas sean máximas? Identificar en el mapa de 700 hPa una región donde la advección térmica sea fría, otra donde sea cálida y otra donde sea aproximadamente nula.
 - b. A partir de los campos de viento dados en 500 hPa y 850 hPa, graficar en el mapa de 500 hPa el V_T en las regiones indicadas en el inciso a.
 - c. Esquematizar V_T en el mapa de 700 hPa en las mismas regiones que en el inciso b. y comparar los resultados.

Respuestas

- 1. $v_g = 4.48 \text{ m/s}$
- 2. Vg = 19.4 m/s (dirigido hacia el SE)

4.
$$-V_g \cdot \nabla T_{1000-700} = 5.54 \times 10^{-5} \text{ K/s}$$

$$-V_g \cdot \nabla T_{700-500} = -1.76 \times 10^{-4} \text{ K/s}$$

$$-V_g \cdot \nabla T_{500-250} = -3.61 \times 10^{-5} \text{ K/s}$$