
SExtractor

Draft
v2.3

User’s manual

E. BERTIN

Institut d’Astrophysique
& Observatoire de Paris

1

2

Contents

1 What is SExtractor? 5

2 Installing the software 5

2.1 Software and hardware requirements . 5

2.2 Obtaining SExtractor . 6

2.3 Installation . 6

3 Using SExtractor 6

3.1 Syntax . 6

3.2 The configuration file . 6

3.2.1 Format . 7

3.2.2 Configuration parameter list . 7

3.3 The catalog parameter file . 12

3.3.1 Format . 12

3.4 Example of configuration . 12

4 Overview of the software 12

5 Handling of image data 12

6 Detection and segmentation 14

6.1 Background estimation . 14

6.1.1 Configuration parameters and tuning . 15

6.1.2 CPU cost . 16

6.2 Filtering . 16

6.2.1 Convolution . 16

6.2.2 Non-linear filtering . 17

6.2.3 What is filtered, and what isn’t . 18

6.2.4 Image boundaries and bad pixels . 18

6.2.5 Configuration parameters. 18

6.2.6 CPU cost. 19

6.2.7 Filter file formats. 19

6.3 Thresholding . 19

6.3.1 Configuration parameters. 20

6.4 Deblending . 20

3

7 Weighting 22

7.1 Weight-map formats . 23

7.2 Weight threshold . 24

7.3 Effect of weighting . 24

7.4 Combining weight maps . 24

7.5 Interpolation . 25

8 Flags 25

8.1 Internal flags . 25

8.2 External flags . 26

9 Measurements 26

9.1 Positional parameters derived from the isophotal profile 26

9.1.1 Limits: XMIN, YMIN, XMAX, YMAX . 27

9.1.2 Barycenter: X, Y . 27

9.1.3 Position of the peak: XPEAK, YPEAK . 27

9.1.4 2nd order moments: X2, Y2, XY . 27

9.1.5 Basic shape parameters: A, B, THETA . 28

9.1.6 Ellipse parameters: CXX, CYY, CXY . 29

9.1.7 By-products of shape parameters: ELONGATION, ELLIPTICITY 29

9.1.8 Position errors: ERRX2, ERRY2, ERRXY, ERRA, ERRB, ERRTHETA, ERRCXX,
ERRCYY, ERRCXY . 29

9.1.9 Handling of “infinitely thin” detections 31

9.2 Astrometry and WORLD coordinates . 31

9.2.1 Celestial coordinates . 32

9.2.2 Use of the FITS keywords for astrometry 32

9.3 Photometry . 33

9.4 Cross-identification within SExtractor . 35

9.4.1 The ASSOC list . 36

9.4.2 Controlling the ASSOC process . 36

9.4.3 Output from ASSOC . 37

A Appendices 38

A.1 FAQ (Frequently Asked Questions) . 38

4

1 What is SExtractor?

SExtractor (Source-Extractor) is a program that builds a catalogue of objects from an astro-
nomical image. It is particularly oriented towards reduction of large scale galaxy-survey data,
but it also performs well on moderately crowded star fields. Its main features are:

• Support for multi-extension FITS.

• Speed: typically 1 Mpixel/s with a 2GHz processor.

• Ability to work with very large images (up to 65k × 65k pixels on 32 bit machines, or
2G× 2G pixels on 64 bit machines), thanks to buffered image access.

• Robust deblending of overlapping extended objects.

• Real-time filtering of images to improve detectability.

• Neural-Network-based star/galaxy classifier.

• Flexible catalogue output of desired parameters only.

• Pixel-to-pixel photometry in dual-image mode.

• Handling of weight-maps and flag-maps.

• Optimum handling of images with variable S/N.

• Special mode for photographic scans.

Back in the early nineties, the purpose of SExtractor was to find a compromise between re-
finement in both detection and measurements, and computational speed. By today’s standards,
SExtractor would be more accurately described as a “quick-and-dirty” tool.

2 Installing the software

2.1 Software and hardware requirements

Since the beginning in 1993, the development of SExtractor was always made on Unix systems
(successively: SUN-OS, HP/UX, SUN-Solaris, Digital Unix and GNU/Linux). Successful ports
by external contributors have been reported on non-Unix OSes such as AMIGA-OS, DEC-VMS
and even MS-DOS Windows951 and NT ;). They are however not currently supported by the
author, and Unix remains the recommended system for running SExtractor. The software
is generally run in (ANSI) text-mode from a shell. A window system is therefore unnecessary
with present versions.

On the hardware side, memory requirements obviously depend on the size of the images to be
processed. But to give an idea, a typical processing of 1024×1024 pixel images should require no
more than 8 MB of memory. For very large images, (32000× 32000 pixels or more), a minimum
of 200MB is recommended. Swap-space can of course be put to contribution, although a strong
performance hit is to be expected.

1Binaries are available on the WWW, see e.g. http://www.tass-survey.org/tass/software/software.html#sextract

5

2.2 Obtaining SExtractor

The easiest way to obtain SExtractor is to download it from http://terapix.iap.fr/soft/sextractor/.
The current official anonymous FTP site is ftp://ftp.iap.fr/pub/from users/bertin/sextractor/.
There can be found the latest versions of the program as standard .tar.gz Unix archives, plus
some documentation.

2.3 Installation

To install from the source archive, you must first uncompress and unarchive the archive:

gzip -dc sextractor-x.y.tar.gz | tar xv

A new directory called sextractor-x.y should now appear at the current position on your disk.
You should then just enter the directory and follow the instructions in the file called “INSTALL”.
If you have the root privileges, it will generally consist of

% ./configure

% make

% make install

RPM binary archives are also provided for x86 architectures (e.g. Intel, AMD). In this case,
SExtractor can be installed as root using

% rpm -U sextractor-x.y.-z.rpm

3 Using SExtractor

3.1 Syntax

SExtractor is run from the shell with the following syntax:

% sex image [-c configuration-file] [-Parameter1 Value1] [-Parameter2 Value2] ...

The part enclosed within brackets is optional. Any ”-Parameter Value” statement in the
command-line overrides the corresponding definition in the configuration-file or any default
value (see below). Actually, two image filenames can be provided, separated by a comma:

% sex image1,image2

This syntax makes SExtractor run in the so-called “double-image mode”: image1 will be
used for detection of sources, and image2 for measurements only. image1 and image2 must
have the same dimensions. Changing image2 for another image will not modify the number of
detected sources, neither affect their positional or basic shape parameters. But most photometric
parameters, plus a few others, will use image2 pixel values, which allows one to easily measure
pixel-to-pixel colours.

3.2 The configuration file

SExtractor needs several files for its configuration. If no configuration file-name is specified
in the command line, SExtractor tries to load a file called “default.sex” from the local
directory. If default.sex is not found, it loads default values defined internally. The default

6

parameters can be listed with the command

% sex -d

3.2.1 Format

The format is ASCII. There must be only one parameter set per line, following the form:

Config-parameter Value(s)

Extra spaces or linefeeds are ignored. Comments must begin with a “#” and end with a linefeed.
Values can be of different types: strings (can be enclosed between double quotes), floats, integers,
keywords or boolean (Y/y or N/n). Some parameters accept zero or several values, which must
then be separated by commas. Integers can be given as decimals, in octal form (preceded by digit
O), or in hexadecimal (preceded by 0x). The hexadecimal format is particularly convenient for
writing multiplexed bit values such as binary masks. Environment variables, written as $HOME

or ${HOME} are expanded, and not only for string parameters. Some parameters are assigned
default values in SExtractor and can therefore be omitted from the configuration file; they
are listed in §3.2.2.

3.2.2 Configuration parameter list

Here is a complete list of all the configuration parameters known to SExtractor. Many of
them should be used with their default values. Please refer to the next sections for a detailed
description of their meaning.

Parameter default type Description

ANALYSIS THRESH — floats (n ≤ 2) Threshold (in surface brightness) at
which CLASS STAR and FWHM op-
erate. 1 argument: relative to
Background RMS. 2 arguments: mu
(mag.arcsec−2), Zero-point (mag).

ASSOC DATA 2,3,4 integers (n ≤ 32) # of the columns in the ASSOC file that
will be copied to the catalog output.

ASSOC NAME sky.list string Name of the ASSOC ASCII file.
ASSOC PARAMS 2,3,4 integers (2 ≤ n ≤ 3) Nos of the columns in the ASSOC file

that will be used as coordinates and
weight for cross-matching.

ASSOC RADIUS 2.0 float Search radius (in pixels) for ASSOC.
ASSOC TYPE MAG SUM keyword Method for cross-matching in ASSOC:

FIRST – keep values corresponding to the
first match found,

NEAREST – values corresponding to the nearest
match found,

MEAN – weighted-average values,
MAG MEAN – exponentialy weighted-average val-

ues,
SUM – sum values,
MAG SUM – exponentialy sum values,
MIN – keep values corresponding to the

match with minimum weight,

7

MAX – keep values corresponding to the
match with maximum weight.

ASSOCSELEC TYPE MATCHED keyword What sources are printed in the out-
put catalog in case of ASSOC:

ALL – all detections,
MATCHED – only matched detections,
-MATCHED – only detections that were not

matched.
BACK FILTERSIZE — integers (n ≤ 2) Size, or Width,Height (in background

meshes) of the background-filtering
mask.

BACK SIZE — integers (n ≤ 2) Size, or Width,Height (in pixels) of a
background mesh.

BACK TYPE AUTO keywords (n ≤ 2) What background is subtracted from
the images:

AUTO – the internal, automatically interpo-
lated background-map,

MANUAL – a user-supplied constant value pro-
vided in BACK VALUE.

BACK VALUE 0.0,0.0 floats (n ≤ 2) in BACK TYPE MANUAL mode, the con-
stant value to be subtracted from the
images.

BACKPHOTO THICK 24 integer Thickness (in pixels) of the back-
ground LOCAL annulus.

BACKPHOTO TYPE GLOBAL keyword Background used to compute magni-
tudes:

GLOBAL – taken directly from the background
map,

LOCAL – recomputed in a “rectangular annu-
lus” around the object.

CATALOG NAME — string Name of the output catalogue. If
the name “STDOUT” is given and
CATALOG TYPE is set to ASCII,
ASCII HEAD, or ASCII SKYCAT, the
catalogue will be piped to the
standard output (stdout)

CATALOG TYPE — keyword Format of output catalog:
ASCII – ASCII table; the simplest, but space

and time consuming,
ASCII HEAD – as ASCII, preceded by a header con-

taining information about the content,
ASCII SKYCAT – SkyCat ASCII format (WCS coordi-

nates required),
FITS 1.0 – FITS format as in SExtractor 1,
FITS LDAC – FITS “LDAC” format (the original

image header is copied).
CHECKIMAGE NAME check.fits strings (n ≤ 16) File name for each “check-image”.

8

CHECKIMAGE TYPE NONE keywords (n ≤ 16) Type of information to put in the
“check-images”:

NONE – no check-image,
IDENTICAL – identical to input image (useful for

converting formats),
BACKGROUND – full-resolution interpolated back-

ground map,
BACKGROUND RMS – full-resolution interpolated back-

ground noise map,
MINIBACKGROUND – low-resolution background map,
MINIBACK RMS – low-resolution background noise

map,
-BACKGROUND – background-subtracted image,
FILTERED – background-subtracted filtered im-

age (requires FILTER = Y),
OBJECTS – detected objects,
-OBJECTS – background-subtracted image with

detected objects blanked,
APERTURES – MAG APER and MAG AUTO integration

limits,
SEGMENTATION – display patches corresponding to

pixels attributed to each object.
CLEAN — boolean If true, a “cleaning” of the catalogue

is done before being written to disk.
CLEAN PARAM — float Efficiency of “cleaning”.
DEBLEND MINCONT — float Minimum contrast parameter for de-

blending.
DEBLEND NTHRESH — integer Number of deblending sub-thresholds.
DETECT MINAREA — integer Minimum number of pixels above

threshold triggering detection.
DETECT THRESH — floats (n ≤ 2) Detection threshold. 1 argument:

(ADUs or relative to Background
RMS, see THRESH TYPE). 2 arguments:
µ (mag.arcsec−2), Zero-point (mag).

DETECT TYPE CCD keyword Type of device that produced the im-
age:

CCD – linear detector like CCDs or NIC-
MOS,

PHOTO – photographic scan.
FILTER — boolean If true, filtering is applied to the data

before extraction.
FILTER NAME — string Name of the file containing the filter

definition.
FILTER THRESH floats (n ≤ 2) Lower and higher thresholds (in back-

ground standard deviations) for a
pixel to be considered in filtering (used
for retina-filtering only).

FITS UNSIGNED N boolean Force 16-bit FITS input data to be in-
terpreted as unsigned integers.

FLAG IMAGE flag.fits strings (n ≤ 4) File name(s) of the “flag-image(s)”.

9

FLAG TYPE OR keyword Combination method for flags on the
same object:

OR – arithmetical OR,
AND – arithmetical AND,
MIN – minimum of all flag values,
MAX – maximum of all flag values,
MOST – most common flag value.

GAIN float “Gain” (conversion factor in
e−/ADU) used for error estimates of
CCD magnitudes .

INTERP MAXXLAG 16 integers (n ≤ 2) Maximum x gap (in pixels) allowed in
interpolating the input image(s).

INTERP MAXYLAG 16 integers (n ≤ 2) Maximum y gap (in pixels) allowed in
interpolating the input image(s).

INTERP TYPE ALL keywords (n ≤ 2) Interpolation method from the
variance-map(s) (or weight-map(s)):

NONE – no interpolation,
VAR ONLY – interpolate only the variance-map

(detection threshold),
ALL – interpolate both the variance-map

and the image itself.
MAG GAMMA float γ of the emulsion (takes effect in

PHOTO mode only).
MAG ZEROPOINT float Zero-point offset to be applied to mag-

nitudes.
MASK TYPE CORRECT keyword Method of “masking” of neighbours

for photometry:
NONE – no masking,
BLANK – put detected pixels belonging to

neighbours to zero,
CORRECT – replace by values of pixels symetric

with respect to the source center.
MEMORY BUFSIZE — integer Number of scan-lines in the image-

buffer. Multiply by 4 the frame width
to get equivalent memory space in
bytes.

MEMORY OBJSTACK — integer Maximum number of objects that the
object-stack can contain. Multiply by
300 to get equivalent memory space in
bytes.

MEMORY PIXSTACK — integer Maximum number of pixels that the
pixel-stack can contain. Multiply by
16 to 32 to get equivalent memory
space in bytes.

PARAMETERS NAME — string The name of the file containing the list
of parameters that will be computed
and put in the catalogue for each ob-
ject.

PHOT APERTURES — floats (n ≤ 32) Aperture diameters in pixels (used by
MAG APER).

10

PHOT AUTOPARAMS — floats (n = 2) MAG AUTO controls: scaling parameter
k of the 1st order moment, and mini-
mum Rmin (in units of A and B).

PHOT AUTOAPERS 0.0,0.0 floats (n = 2) MAG AUTO minimum (circular) aper-
ture diameters: estimation disk, and
measurement disk.

PHOT FLUXFRAC 0.5 floats (n ≤ 32) Fraction of FLUX AUTO defining each
element of the FLUX RADIUS vector.

PIXEL SCALE — float Pixel size in arcsec (for surface
brightness parameters, FWHM and
star/galaxy separation only).

SATUR LEVEL — float Pixel value above which it is consid-
ered saturated.

SEEING FWHM — float FWHM of stellar images in arcsec
(only for star/galaxy separation).

STARNNW NAME — string Name of the file containing the neural-
network weights for star/galaxy sepa-
ration.

THRESH TYPE RELATIVE keywords (n ≤ 2) Meaning of the DETECT THRESH and
ANALYSIS THRESH parameters :

RELATIVE – scaling factor to the background
RMS,

ABSOLUTE – absolute level (in ADUs or in surface
brightness).

VERBOSE TYPE NORMAL keyword How much SExtractor comments
its operations:

QUIET – run silently,
NORMAL – display warnings and limited info

concerning the work in progress,
EXTRA WARNINGS – like NORMAL, plus a few more warn-

ings if necessary,
FULL – display a more complete information

and the principal parameters of all the
objects extracted.

WEIGHT GAIN Y boolean If true, weight maps are considered as
gain maps.

WEIGHT IMAGE weight.fits strings (n ≤ 2) File name of the detection and
measurement “weight-image”, respec-
tively.

WEIGHT TYPE NONE keywords (n ≤ 2) Weighting scheme (for single image, or
detection and measurement images):

NONE – no weighting,
BACKGROUND – variance-map derived from the im-

age itself,
MAP RMS – variance-map derived from an exter-

nal RMS-map,
MAP VAR – external variance-map,
MAP WEIGHT – variance-map derived from an exter-

nal weight-map,

1Optional parameter

11

3.3 The catalog parameter file

In addition to the configuration file detailed above, SExtractor needs a file containing the list
of parameters that will be listed in the output catalog for every detection. This allows the soft-
ware to compute only catalog parameters that are needed. The name of this catalog-parameter
file is traditionally suffixed with .param, and must be specified using the PARAMETERS NAME

config parameter.

3.3.1 Format

The format of the catalog parameter list is ASCII, and there must be only one keyword per
line. Presently two kinds of keywords are recognized by SExtractor: scalars and vectors.
Scalars, like X IMAGE, yield single numbers in the output catalog. Vectors, like MAG APER(4) or
VIGNET(15,15), yield arrays of numbers. The order in which the parameters will be listed in
the catalogue are the same as that of the keywords in the parameter list. Comments are allowed,
they must begin with a “#”. Here is a descriptive list of available parameter keywords.

3.4 Example of configuration

4 Overview of the software

The complete analysis of an image is done in two passes through the data. During the first
pass, a model of the sky background is built, and a couple of global statistics are estimated.
During the second pass, the image is background-subtracted, filtered and thresholded “on-the-
fly”. Detections are then deblended, pruned (“CLEANed”), photometered, classified and finally
written to the output catalog. The following sections enter a little more into the details of each
of these operations2.

5 Handling of image data

SExtractor accepts images stored in FITS3 format (Wells et al. 1981, see also http://fits.gsfc.nasa.gov).
Both “Basic FITS” (one single header and one single body) and “Multi-Extension-FITS” (MEF)
images are recognized. Binary SExtractor catalogs produced from MEF images are MEF files
themselves. If catalog output is in ASCII format, all catalogs from the individual extensions
are concatenated in one big file; the EXT NUMBER catalog parameter must be used to tell which
extension the source belongs to.

For images with NAXIS > 2, only the first data-plane is loaded. If WCS4 information (Greisen
& Calabretta 1995, http://www.cv.nrao.edu/fits/documents/wcs/wcs.all.ps) is available
in the header, it is automatically used by SExtractor to compute astrometric parameters.
Other astrometric descriptions like AST (Starlink format) or the solution coefficients of the DSS
5 plates are not recognized by the software.

2In the text, uppercase keywords in typewriter font refer to parameters from the configuration file or from the
parameter file

3Flexible Image Transport System
4World Coordinate System
5Digital Sky Survey

12

Ext. weight map

External image

Flag-map

Weight-map

Input frame

Frame buffer

Frame buffer

Frame buffer

filtering
Image

stack
Pixel-

Isophotal
analysis

Object-
stack

‘‘Cleaning’’
of detections

De-blending

PSF mapping

Cross-
identification(ASCII)

Input catalog
Output catalog

Frame buffer

Frame buffer Background
subtraction

Convolution

or Retina
mask,

Image
segmentation

Photometry
Astrometry subtraction

Background

Figure 1: Layout of the main SExtractor procedures. Dashed arrows represent optional
inputs.

13

In SExtractor, as in all similar programs, FITS axis “1” is traditionaly refered as the X axis,
and FITS axis “2” as the Y axis.

6 Detection and segmentation

In SExtractor, the detection of sources is part of a process called segmentation in the image-
processing vocabulary. Segmentation normally consists of identifying and separating image
regions which have different properties (brightness, colour, texture...) or are delineated by
edges. In the astronomical context, the segmentation process consists of separating objects from
the sky background. This is however a somewhat imprecise definition, as astronomical sources
have, on the images — and even often physically —, no clear boundaries, and may overlap.
We shall therefore use the following working definition of an object in SExtractor: a group
of pixels selected through some detection process and for which the flux contribution of an
astronomical source is believed to be dominant over that of other objects. Note that this means
that a simple x, y position vector alone cannot be handled by SExtractor as a detection: most
measurement routines require some rough shape information about the objects.

Segmentation in SExtractor is achieved through a very simple thresholding process: a group
of connected pixels that exceed some threshold above the background is identified as a detection.
But things are a little bit more complicated in practice. First, on most astronomical images, the
background is not constant over the frame, and its determination can be ambiguous in crowded
regions. Second, the software has to operate on noisy data, and some filtering adapted to the
characteristics of the image has to be applied prior to detection, to reduce the contamination by
noise peaks. Third, many sources that overlap on the image are unlikely to be detected separately
with a single detection threshold, and require a de-blending procedure, which is actually multi-
thresholding in SExtractor. Each of these points will now be described in greater detail
below. It is worth mentioning here that these 3 difficulties could, to a large extent, be bypassed
using a wavelet decomposition (e.g. Bijaoui et al. 1998). Although such an algorithm might
be implemented in a future version of SExtractor, current constraints in processing speed,
available memory (processing of gigantic images) often make the “pedestrian approach” still
more interesting in the case of large scale surveys.

6.1 Background estimation

The value measured at each pixel is a function of the sum of a “background” signal and light
coming from the objects of interest. To be able to detect the faintest of these objects and also
to measure accurately their fluxes, one needs to have an accurate estimate of the background
level in any place of the image, a “background map”. Strictly speaking, there should be one
background map per object, that is, what would the image look like if that object was absent.
But, at least for detection, we may start by assuming that most discrete sources do not overlap
too severely, which is generally the case for high galactic latitude fields.

To construct the background map, SExtractor makes a first pass through the pixel data,
computing an estimator for the local background in each mesh of a grid that covers the whole
frame. The background estimator is a combination of κ.σ clipping and mode estimation, similar
to the one employed in Stetson’s DAOPHOT program (see e.g. Da Costa 1992). Briefly, the
local background histogram is clipped iteratively until convergence at ±3σ around its median;
if σ is changed by less than 20% during that process, we consider that the field is not crowded
and we simply take the mean of the clipped histogram as a value for the background; otherwise

14

we estimate the mode with:

Mode = 2.5×Median− 1.5×Mean (1)

This expression is different from the usual approximation

Mode = 3×Median− 2×Mean (2)

(e.g. Kendall and Stuart 1977), but was found to be more accurate with our clipped distri-
butions, from the simulations we made. Fig. 2 shows that the expression of the mode above
is considerably less affected6 by crowding than a simple clipped mean — like the one used in
FOCAS (Jarvis and Tyson 1981) or by Infante (1987) — but is ≈ 30% noisier. For this reason
we revert to the mean in non-crowded fields.

-10

-5

0

5

10

0 5 10 15 20 25 30

C
lip

pe
d

M
od

e
(A

D
U

)

Clipped Mean (ADU)

Figure 2: Simulations of 32×32 pixels background meshes polluted by random Gaussian profiles.
The true background lies at 0 ADU. While being slightly noisier, the clipped “Mode” gives a
more robust estimate than a clipped Mean in crowded regions.

Once the grid is set up, a median filter can be applied to suppress possible local overestimations
due to bright stars. The resulting background map is then simply a (natural) bicubic-spline
interpolation between the meshes of the grid. In parallel with the making of the background map,
an “RMS-background-map”, that is, a map of the background noise in the image is produced.
It will be used if the WEIGHT TYPE parameter is set different from NONE (see §7.1).

6.1.1 Configuration parameters and tuning

. The choice of the mesh size (BACK SIZE) is very important. If it is too small, the background
estimation is affected by the presence of objects and random noise. Most importantly, part of
the flux of the most extended objects can be absorbed in the background map. If the mesh size
is too large, it cannot reproduce the small scale variations of the background. Therefore a good

6Obviously in some very unfavorable cases (like small meshes falling on bright stars), it leads to totally
inaccurate results.

15

compromise has to be found by the user. Typically, for reasonably sampled images, a width7 of
32 to 256 pixels works well. The user has some control over the background map by specifying
the size of the median filter (BACK FILTERSIZE). A width and height of 1 means that no filtering
will be applied to the background grid. Usually a size of 3×3 is enough, but it may be necessary
to use larger dimensions, especially to compensate, in part, for small background mesh sizes, or
in the case of large artefacts in the images. Median filtering also helps reducing possible ringing
effects of the bicubic-spline around bright features. In some specific cases it might be desirable
to median-filter only background meshes whose original values exceed some threshold above the
filtered-value. This differential threshold is set by the BACK FILTERTHRESH parameter, in ADUs.
It is important to note that all BACK configuration parameters also affect the background-RMS
map.

By default the computed background-map is automatically subtracted from the input image.
But there are some situations where it is more appropriate to subtract a constant from the
image (e.g., images where the background noise distribution is strongly skewed). The BACK TYPE

configuration parameter (set by default to “AUTO”) can be switched to MANUAL to allow for
the value specified by the BACK DEFAULT parameter to be subtracted from the input image. The
default value is 0.

6.1.2 CPU cost

. The background estimation operation can take a considerable time on the largest images, e.g.
a few minutes minutes for a 32000× 32000 frame on a 2GHz processor.

6.2 Filtering

6.2.1 Convolution

Detectability is generally limited at the faintest flux levels by a background noise. The power-
spectrum of the noise and that of the superimposed signal can be significantly different. Some
gain in the ability to detect sources may therefore be obtained simply through appropriate linear
filtering of the data, prior to segmentation. In low density fields, an optimal convolution kernel
h (“matched filter”) can be found that maximizes detectability. An estimator of detectability is
for instance the signal-to-noise ratio at source position (x0, y 0) ≡ (0, 0):

(
S

N

)2

≡ ((s ∗ h)(x0, y 0))2

(n ∗ h)2
, (3)

where s is the signal to be detected, n the noise, and ‘∗’ the convolution operator. Moving to
Fourier space, we get: (

S

N

)2

=
(
∫ SH dω)2

∫ |N |2|H|2 dω , (4)

where S and H are the Fourier-transforms of s and h, respectively, and |N |2 is the power-
spectrum of the noise. Remarking, using Schwartz inequality, that

∣∣∣∣
∫
SH dω

∣∣∣∣
2

≤
∫ |S|2
|N |2dω

∫
|N |2|H|2dω , (5)

7SExtractor offers the possibility of rectangular background meshes; but it is advised to use square ones,
except in some very special cases (rapidly varying background in one direction for example).

16

we see that (
S

N

)2

≤
∫ |S|2
|N |2dω . (6)

Equality (maximum S/N) in (5) and (6) is achieved for

S
|N | ∝ |N |H

∗ , that is (7)

H ∝ S∗
|N |2 . (8)

In the case of white noise (a valid approximation for many astronomical images, especially CCD
ones), |N |2 = cste ; the optimal convolution kernel for detecting stars is then the PSF flipped
over the x and y directions. It may also be described as the cross-correlation with the template
of the sources to be detected (for more details see, e.g. Bijaoui & Dantel 1970, or Das 1991).

There are of course a few problems with this method. First of all, many sources of unquestionable
interest, like galaxies, appear in a variety of shapes and scales on astronomical images. A
perfectly optimized detection routine should ultimately apply all relevant convolution kernels
one after the other in order to make a complete catalog. Approximations to this approach are the
(isotropic) wavelet analysis mentioned earlier, or the more empirical ImCat algorithm (Kaiser
et al. 1995), for both of which sources to detect are assumed to be reasonably round. The impact
on memory usage and processing speed of such refinements is currently judged too severe to be
applied in SExtractor. Simple filtering does a good job in general: the topological constraints
added by the segmentation process make the detection somewhat tolerant towards larger objects.
Extended, very Low-Surface-Brightness (LSB) features found in astronomical images are often
artifacts (flat-fielding errors, optical “ghosts” or halos). However, it is true that some of them
can be genuine objects, like LSB galaxies, or distant galaxy clusters burried in the background
noise. For detecting those with software like SExtractor, a specific processing is needed (see
for instance Dalcanton et al. 1997 and references therein). The simplest way to achieve the
detection of extended LSB objects in SExtractor is to work on MINIBACK check-images (see
§??).

A second problem may occur because of overlaps with other objects. Convolving with a low-
pass filter (the PSF has no negative side-lobes) diminishes the contrast between objects, and
makes segmentation less effective in isolating individual sources. This can to some extent be
recovered by deblending (see §6.4). In severely crowded fields however, confusion noise becomes
the limiting factor for detection, and it is then advisable not to filter at all, or to use a bandpass-
filter (compensated filter).

Finally, the PSF appears sometimes to be variable across the field. The convolution mask should
ideally follow these changes in order to allow for optimal detection everywhere in the image.
However, considering approximately-Gaussian PSF cores and convolution kernels, detectability
is a rather slow function of their FWHMs8: a mismatch as large as 50% between the kernel
FWHM and that of the PSF will lead to no more than a 10% loss in peak S/N (Irwin 1985).
Considering that PSF variations are generally much smaller than this, filtering in SExtractor
is limited to constant kernels.

6.2.2 Non-linear filtering

There are many situations in which convolution is of little help: filtering of (strongly) non-
Gaussian noise, extraction of specific image patterns,... In those cases, one would like to extend

8Full-Width at Half-Maximum

17

the concept of a convolution kernel to that of a more general stationnary filter, able for instance
to mimick boolean-like operations on pixels. What one wants like is thus a mapping from Rn

to R around each pixel. But the more general the filter, the more difficult it is to design “by-
hand” for each case, specifying how input pixel #i should be taken into account with respect
to input pixel #j to form the output, etc.. The solution to this is machine-learning. Given
a training set containing input and output pixels, a machine-learning software will adapt its
internal parameters in order to minimize a “cost function” (generally a χ2 error) and converge
toward the desired mapping-function. These parameters can then for example be reloaded by a
“read-only” routine to provide the actual filtering.

SExtractor implements this kind of “read-only” functionnality in the form of the so-called
“retina-filtering”. The EyE9 software (Bertin 1997) performs neural-network-learning on input
and output images to produce “retina-files”. These files contain weights that describe the
behaviour of the neural network. The neural network can thus be seen as an “artificial retina”
that takes its stimuli from a small rectangular array of pixels and produces a response according
to prior learning (for more details, see the EyE documentation). Typical applications of the
retina are the identification of glitches.

6.2.3 What is filtered, and what isn’t

Although filtering is a benefit for detection, it distorts profiles and correlates the noise; it is
therefore nefast for most measurement tasks. Because of this, filtering is applied “on the fly” to
the image, and directly affects only the detection process and the isophotal parameters described
in §9.1. Other catalog parameters are indirectly affected — through the exact position of the
barycenter and typical object extent —, but the effect is considerably less. Obviously, in double-
image mode, filtering is only applied to the detection image.

6.2.4 Image boundaries and bad pixels

“Virtual” pixels that lie outside image boundaries are arbitrarily set to zero. This makes sense
since filtering occurs on a background-subtracted image. When weighting is applied (§7), bad
pixels (pixels with weight < WEIGHT THRESH) are interpolated by default (§7.5) and should
therefore not cause much trouble. It is recommended not to turn-off interpolation of bad pixels
when filtering is on.

6.2.5 Configuration parameters.

Filtering is triggered when the FILTER keyword is set to Y. If active, a file with name specified
by FILTER NAME is searched for and loaded. Filtering with large retinas can be extremely time
consuming. In many cases, one is only interested in filtering pixels whose values stand out
from the background noise. The FILTER THRESH keyword can be given to specify the range of
pixel values within which retina-filtering will be applied, in units of background noise standard
deviation. If one value is given, it is interpreted as a lower threshold. For instance:

FILTER_THRESH 3.0

will allow filtering for pixel values exceeding +3σ above the local background, whereas

FILTER_THRESH -10.0,3.0

9Enhance Your Extraction

18

will only allow filtering for pixel values between −10σ and +3σ. FILTER THRESH has no effect
on convolution.

The result of the filtering process can be verified through a FILTERED check-image: see §??.

6.2.6 CPU cost.

The SExtractor filtering routine is particularly optimized for small kernels. It thus provides
a convenient way of filtering large image data. On a 2GHz machine, a convolution by a 5 × 5
kernel will contribute less than 1 second to the processing time of a 2048 × 4096 image. The
numbers for non-linear (retina) filtering depend on the complexity of the neural network, but
can be a hundred times larger.

6.2.7 Filter file formats.

As described above, two kinds of filter files are recognized by SExtractor: convolution files
(traditionaly suffixed with “.conv”), and “retina” files (“.ret” extensions10).

Retina files are written exclusively by the EyE software, as FITS binary-tables.

Convolution files are in ASCII format. The following example shows the content of the gauss 2.0 5x5.conv

file which can be found in the config/ sub-directory of the SExtractor distribution:

CONV NORM

5x5 convolution mask of a gaussian PSF with FWHM = 2.0 pixels.

0.006319 0.040599 0.075183 0.040599 0.006319

0.040599 0.260856 0.483068 0.260856 0.040599

0.075183 0.483068 0.894573 0.483068 0.075183

0.040599 0.260856 0.483068 0.260856 0.040599

0.006319 0.040599 0.075183 0.040599 0.006319

The CONV keyword appearing at the beginning of the first line tells SExtractor that the
file contains the description of a convolution mask (kernel). It can be followed by NORM if the
mask is to be normalized to 1 before being applied, or NONORM otherwise11. The following
lines should contain an equal number of kernel coefficients, separated by <space> of <TAB>
characters. Coefficients in the example above are read from left to right and top to bottom,
corresponding to increasing NAXIS1 (x) and NAXIS2 (y) in the image. Formatting is free, and
number representations like -0.14, -0.1400, -1.4e-1 or -1.4E-01 are equivalent. The width
of the kernel is set by the number of values per line, and its height is given by the number of
lines. Lines beginning with “#” are treated as comments.

6.3 Thresholding

Thresholding is applied to the background-subtracted, filtered image to isolate connected groups
of pixels. Each group defines the approximate position and shape of a basic SExtractor
detection that will be processed further in the pipeline. Groups are made of pixels whose values
exceed the local threshold and which touch each other at their sides or angles (“8-connectivity”).

10In SExtractor, file name extensions are just conventions; they are not used by the software to distinguish
between different file formats.

11If the sum of the kernel coefficients happens to be exactly zero, the kernel is normalized to variance unity.

19

6.3.1 Configuration parameters.

Thresholding is mostly controlled through the DETECT THRESH and DETECT MINAREA keywords.

DETECT THRESH sets the threshold value. If one single value is given, it is interpreted as a
threshold in units of the background’s standard deviation. For example:

DETECT_THRESH 1.5

will set the detection threshold at 1.5σ above the local background. It is important to note
that em the standard deviation quoted here is that of the unFILTERed image, at the pixel scale.
Hence, on images with white Gaussian background noise for instance, a DETECT THRESH of 3.0
will be close to optimum if low-pass FILTERing is turned off, but sub-optimum (too high) if
it is on. On the contrary, if the background noise of the image is intrinsically correlated from
pixel-to-pixel, a DETECT THRESH of 3.0 (with no FILTERing) wil be too low and will result in a
poor reliability of the extracted catalog.

Two numbers can be given as arguments to DETECT THRESH, in which case the first one is
interpreted as an absolute threshold in units of “magnitudes per square-arcsecond”, and the
second as a zero-point in the same units.

DETECT_THRESH 27.2,30.0

will for example set the threshold at 10−0.4(27.2−30) = 13.18 ADUs above the local background.

DETECT MINAREA sets the minimum number of pixels a group should have to trigger a detection.
Obviously this parameter can be used just like DETECT THRESH to detect only bright and “big”
sources, or to increase detection reliability. It is however more tricky to manipulate at low
detection thresholds because of the complex interplay of object topology, noise correlations
(including those induced by filtering), and sampling. In most cases it is therefore recommended
to keep DETECT MINAREA at a small value, typically 1 to 5 pixels, and let DETECT THRESH and
the filter define SExtractor’s sensitivity.

6.4 Deblending

Each time an object extraction is completed, the connected set of pixels passes through a sort
of filter that tries to split it into eventual overlapping components. This case appears more
frequently when the field is crowded or when the detection threshold is set very low. The
deblending method adopted in SExtractor, is based on multi-thresholding, and works on any
kind of object; but it is unable to deblend components that are so close that no saddle is present
in their profile. However, as no assumption has to be made on the shape of the objects, it is
perfectly suited for galaxies as well as for high galactic latitude stellar fields.

Typical problematic cases for deblending include patchy, extended Sc galaxies (which have
to be considered as single entities), and close or interacting pairs of optically faint galaxies
(which have to be considered as separate objects). Basically, the multi-thresholding algorithm
employs a multiple isophotal analysis technique similar to those in use at the APM and the
COSMOS machines (Beard, McGillivray and Thanish 1991); in a first time, each extracted set
of connected pixels is re-thresholded at N levels linearly or exponentially spaced between its
primary extraction threshold and its peak value. This gives us a sort of 2-dimensional “model”
of the light distribution within the object(s), which is stored in the form of a tree structure (fig.
3). Then the algorithm goes downwards, from the tips of branches to the trunk, and decides
at each junction whether it shall extract two (or more) objects or continue its way down. To
meet the conditions described earlier, the following simple decision criteria are adopted: at any

20

junction threshold ti, any branch will be considered as a separate component if

(1) the integrated pixel intensity (above ti) of the branch is greater than a certain fraction δc
of the total intensity of the composite object.

(2) condition (1) is verified for at least one more branch at the same level i.

Note that ideally, condition (1) is both flux- and scale-invariant. However for faint, poorly
resolved objects, the efficiency of the deblending is limited mostly by seeing and sampling.
From the analysis of both small and extended galaxy images, a compromise value for the contrast
parameter δc ∼ 0.005 proved to be optimum. This should normally exclude to separate objects
with a difference in magnitude greater than ≈ 6.

Figure 3: A schematic diagram of the method used to deblend a composite object. The area
profile of the object (smooth curve) can be described in a tree-structured way (thick lines).
The decision to regard or not a branch as a distinct object is determined according to its
relative integrated intensity (tinted area). In that case above, the original object shall split into
two components A and B. Remaining pixels are assigned to their most credible “progenitors”
afterwards.

The outlying pixels with flux lower than the separation thresholds have to be reallocated to
the proper components of the merger. To do so, we have opted for a statistical approach: at
each faint pixel we compute the contribution which is expected from each sub-object using a
bivariate Gaussian fit to its profile, and turn it into a probability for that pixel to belong to the
sub-object. For instance, a faint pixel lying halfway between two close bright stars having the
same magnitude will be appended to one of these with equal probabilities. One big advantage
of this technique is that the morphology of any object is completely defined simply through its
list of pixels.

To test the effects of deblending on photometry and astrometry measurements, we made several
simulations of photographic images of double stars with different separations and magnitudes
under typical observational conditions (fig. 4). It is obvious that multiple isophotal techniques
fail when there is no saddle point present in profiles (i.e. for distance between stars < 2σ in the

21

case of Gaussian images). We measured a magnitude error ≤ 0.2 mag and a shift of the centroid
(≤ 0.4 pixels) for the fainter star in the very worst cases, but no other systematic effects were
noticeable.

-0.4

-0.2

0

0.2

0.4

C
en

tr
oi

d
er

ro
r (

pi
xe

ls
) Centroid

m=21
m=19
m=15
m=11

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25 30

M
ag

ni
tu

de
 e

rr
or

Separation (pixels)

Magnitude

Figure 4: Centroid and corrected isophotal magnitude errors for a simulated 19th magnitude
star blended with a 11, 15, 19 and 21th mag. companion as a function of distance (expressed in
pixels). Lines stop at the left when the objects are too close to be deblended. The dashed vertical
line is the theoretical limit for unsaturated stars with equal magnitudes. In the centroid plot,
the arrow indicates the direction of the neighbour. The simulation assumes a 1 hour exposure
with the CERGA telescope on a IIIaJ plate and Moffat profiles with a seeing FWHM of 3 pixels
(2 ”).

The user can control the multi-thresholding operation through 3 parameters. The first one is
the number of deblending thresholds (DEBLEND NTHRESH). A good value is 32. Higher values
are generally useless, except perhaps for images having an unusually high dynamic range. In
case of memory problems, decreasing the number of thresholds to say, 8 or even less may be
a solution. But then of course a degradation of the deblending performances may occur. The
second parameter is the contrast parameter (DEBLEND MINCONT). As described above, values
from 0.001 to 0.01 give best results. Putting DEBLEND MINCONT to 0 means that even the faintest
local peaks in the profile will be considered as separate objects. Putting it to 1 means that
no deblending will be authorized. The last parameter concerns the kind of scale used for the
thresholds. If the image comes from photographic material, then a linear scale has to be used
(DETECTION TYPE PHOTO). Otherwise, for an image obtained with a linear device like a CCD, an
exponential scale is more appropriate (DETECTION TYPE CCD).

7 Weighting

The noise level in astronomical images is often fairly constant, that is, constant values for the
gain, the background noise and the detection thresholds can be used over the whole frame.
Unfortunately in some cases, like strongly vignetted or composited images, this approximation
is no longer good enough. This leads to detecting clusters of detected noise peaks in the noisiest
parts of the image, or missing obvious objects in the most sensitive ones. SExtractor is able

22

to handle images with variable noise. It does it through weight maps, which are frames having
the same size as the images where objects are detected or measured, and which describe the
noise intensity at each pixel. These maps are internally stored in units of absolute variance (in
ADU2). We employ the generic term “weight map” because these maps can also be interpreted
as quality index maps: infinite variance (≥ 1030 by definition in SExtractor) means that
the related pixel in the science frame is totally unreliable and should be ignored. The variance
format was adopted as it linearizes most of the operations done over weight maps (see below).

This means that the noise covariances between pixels are ignored. Although raw CCD images
have essentially white noise, this is not the case for warped images, for which resampling may
induce a strong correlation between neighbouring pixels. In theory, all non-zero covariances
within the geometrical limits of the analysed patterns should be taken into account to derive
thresholds or error estimates. Fortunately, the correlation length of the noise is often smaller
than the patterns to be detected or measured, and constant over the image. In that case one
can apply a simple “fudge factor” to the estimated variance to account for correlations on
small scales. This proves to be a good approximation in general, although it certainly leads to
underestimations for the smallest patterns.

7.1 Weight-map formats

SExtractor accepts in input, and converts to its internal variance format, several types of
weight-maps. This is controlled through the WEIGHT TYPE configuration keyword. These weight-
maps can either be read from a FITS file, whose name is specified by the WEIGHT IMAGE keyword,
or computed internally. Valid WEIGHT TYPEs are:

• NONE: No weighting is applied. The related WEIGHT IMAGE and WEIGHT THRESH (see below)
parameters are ignored.

• BACKGROUND: the science image itself is used to compute internally a variance map (the
related WEIGHT IMAGE parameter is ignored). Robust (3σ-clipped) variance estimates are
first computed within the same background meshes as those described in §??12. The result-
ing low-resolution variance map is then bicubic-spline-interpolated on the fly to produce
the actual full-size variance map. A check-image with CHECKIMAGE TYPE MINIBACK RMS

can be requested to examine the low-resolution variance map.

• MAP RMS: the FITS image specified by the WEIGHT IMAGE file name must contain a weight-
map in units of absolute standard deviations (in ADUs per pixel).

• MAP VAR: the FITS image specified by the WEIGHT IMAGE file name must contain a weight-
map in units of relative variance. A robust scaling to the appropriate absolute level is
then performed by comparing this variance map to an internal, low-resolution, absolute
variance map built from the science image itself.

• MAP WEIGHT: the FITS image specified by the WEIGHT IMAGE file name must contain a
weight-map in units of relative weights. The data are converted to variance units (by defi-
nition variance ∝ 1/weight), and scaled as for MAP VAR. MAP WEIGHT is the most commonly
used type of weight-map: a flat-field, for example, is generally a good approximation to a
perfect weight-map.

12The mesh-filtering procedures act on the variance map, too.

23

7.2 Weight threshold

It may happen, that some weights are too low (or variances too high) to be of any interest: it is
then more appropriate to discard such pixels than to include them in unweighted measurements
such as FLUX APER. To allow discarding these very bad pixels, a threshold can be set with the
WEIGHT THRESH parameter. The unit in which this threshold should be expressed is that of input
data: ADUs for BACKGROUND and MAP RMS maps, uncalibrated ADUs2 for MAP VAR,
and uncalibrated weight-values for MAP WEIGHT maps. Depending on the weight-map type,
the threshold will set a lower or a higher limit for “bad pixel” values: higher for weights, and
lower for variances and standard deviations. The default value is 0 for weights, and 1030 for
variance and standard deviation maps.

7.3 Effect of weighting

Weight-maps modify the working of SExtractor in the following respects:

1. Bad pixels are discarded from the background statistics. If more than 50% of the pixels
in a background mesh are bad, the local background value and its standard deviation are
replaced by interpolation of the nearest valid meshes.

2. The detection threshold t above the local sky background is adjusted for each pixel i with

variance σ2
i : ti = DETECT THRESH ×

√
σ2
i , where DETECT THRESH is expressed in units of

standard deviations of the background noise. Pixels with variance above the threshold set
with the WEIGHT THRESH parameter are therefore simply not detected. This may result in
splitting objects crossed by a group of bad pixels. Interpolation (see §7.5) should be used
to avoid this problem. If convolution filtering is applied for detection, the variance map is
convolved too. This yields optimum scaling of the detection threshold in the case where
noise is uncorrelated from pixel to pixel. Non-linear filtering operations (like those offered
by artificial retinae) are not affected.

3. The CLEANing process (§??) takes into account the exact individual thresholds assigned to
each pixel for deciding about the fate of faint detections.

4. Error estimates like FLUXISO ERR, ERRA IMAGE, ... make use of individual variances too.

Local background-noise standard deviation is simply set to
√
σ2
i . In addition, if the

WEIGHT GAIN parameter is set to Y — which is the default —, it is assumed that the
local pixel gain (i.e., the conversion factor from photo-electrons to ADUs) is inversely
proportional to σ2

i , its median value over the image being set by the GAIN configuration
parameter. In other words, it is then supposed that the changes in noise intensities seen
over the images are due to gain changes. This is the most common case: correction for
vignetting, or coverage depth. When this is not the case, for instance when changes are
purely dominated by those of the read-out noise, WEIGHT GAIN shall be set to N.

5. Finally, pixels with weights beyond WEIGHT THRESH are treated just like pixels discarded
by the MASKing process (§??).

7.4 Combining weight maps

All the weighting options listed in §7.1 can be applied separately to detection and measurement
images (§3), — even if some combinations may not always make sense. For instance, the following
set of configuration lines:

24

WEIGHT_IMAGE rms.fits,weight.fits

WEIGHT_TYPE MAP_RMS,MAP_WEIGHT

will load the FITS file rms.fits and use it as an RMS map for adjusting the detection threshold
and CLEANing, while the weight.fits weight map will only be used for scaling the error
estimates on measurements. This can be done in single- as well as in dual-image mode (§3).
WEIGHT IMAGEs can be ignored for BACKGROUND WEIGHT TYPEs. It is of course possible to use
weight-maps for detection or for measurement only. The following configuration:

WEIGHT_IMAGE weight.fits

WEIGHT_TYPE NONE,MAP_WEIGHT

will apply weighting only for measurements; detection and CLEANing operations will remain
unaffected.

7.5 Interpolation

TBW

8 Flags

A set of both internal and external flags is accessible for each object. Internal flags are produced
by the various detection and measurement processes within SExtractor; they tell for instance
if an object is saturated or has been truncated at the edge of the image. External flags come
from “flag-maps”: these are images with the same size as the one where objects are detected,
where integer numbers can be used to flag some pixels (for instance, “bad” or noisy pixels).
Different combinations of flags can be applied within the isophotal area that defines each object,
to produce a unique value that will be written to the catalog.

8.1 Internal flags

The internal flags are always computed. They are accessible through the FLAGS catalog parame-
ter, which is a short integer. FLAGS contains, coded in decimal, all the extraction flags as a sum
of powers of 2:

1 The object has neighbours, bright and close enough to significantly bias the MAG AUTO

photometry13, or bad pixels (more than 10% of the integrated area affected),
2 The object was originally blended with another one,
4 At least one pixel of the object is saturated (or very close to),
8 The object is truncated (too close to an image boundary),
16 Object’s aperture data are incomplete or corrupted,
32 Object’s isophotal data are incomplete or corrupted14,
64 A memory overflow occurred during deblending,
128 A memory overflow occurred during extraction.

For example, an object close to an image border may have FLAGS = 16, and perhaps FLAGS =
8+16+32 = 56.

13This flag can be activated only when MAG AUTO magnitudes are requested.
14This flag is inherited from SExtractor V1.0, and has been kept for compatibility reasons. With SExtrac-

tor V2.0+, having this flag activated doesn’t have any consequence for the extracted parameters.

25

8.2 External flags

SExtractor understands that it must process external flags when IMAFLAGS ISO or NIMAFLAGS ISO

are present in the catalog parameter file. It then looks for a FITS image specified by the
FLAG IMAGE keyword in the configuration file. The FITS image must contain the flag-map, in
the form of a 2-dimensional array of 8, 16 or 32 bits integers. It must have the same size as the
image used for detection. Such flag-maps can be created using for example the WeightWatcher
software (Bertin 1997).

The flag-map values for pixels that coincide with the isophotal area of a given detected object
are then combined, and stored in the catalog as the long integer IMAFLAGS ISO. 5 kinds of
combination can be selected using the FLAG TYPE configuration keyword:

• OR: the result is an arithmetic (bit-to-bit) OR of flag-map pixels.

• AND: the result is an arithmetic (bit-to-bit) AND of non-zero flag-map pixels.

• MIN: the result is the minimum of the (signed) flag-map pixels.

• MAX: the result is the maximum of the (signed) flag-map pixels.

• MOST: the result is the most frequent non-zero flag-map pixel-value.

The NIMAFLAGS ISO catalog parameter contains a number of relevant flag-map pixels: the num-
ber of non-zero flag-map pixels in the case of an OR or AND FLAG TYPE, or the number of pixels
with value IMAFLAGS ISO if the FLAG TYPE is MIN,MAX or MOST.

9 Measurements

Once sources have been detected and deblended, they enter the measurement phase. There are
in SExtractor two categories of measurements. Measurements from the first category are
made on the isophotal object profiles. Only pixels above the detection threshold are considered.
Many of these isophotal measurements (like X IMAGE, Y IMAGE, etc.) are necessary for the in-
ternal operations of SExtractor and are therefore executed even if they are not requested.
Measurements from the second category have access to all pixels of the image. These measure-
ments are generally more sophisticated and are done at a later stage of the processing (after
CLEANing and MASKing).

9.1 Positional parameters derived from the isophotal profile

The following parameters are derived from the spatial distribution S of pixels detected above
the extraction threshold. The pixel values Ii are taken from the (filtered) detection image.

Note that, unless otherwise noted, all parameter names given below are only pre-
fixes. They must be followed by ” IMAGE” if the results shall be expressed in pixel
units (see §..), or ” WORLD” for World Coordinate System (WCS) units (see §9.2).
Example: THETA → THETA IMAGE. In all cases parameters are first computed in the image coor-
dinate system, and then converted to WCS if requested.

26

9.1.1 Limits: XMIN, YMIN, XMAX, YMAX

These coordinates define two corners of a rectangle which encloses the detected object:

XMIN = min
i∈S

xi, (9)

YMIN = min
i∈S

yi, (10)

XMAX = max
i∈S

xi, (11)

YMAX = max
i∈S

yi, (12)

where xi and yi are respectively the x-coordinate and y-coordinate of pixel i.

9.1.2 Barycenter: X, Y

Barycenter coordinates generally define the position of the “center” of a source, although this
definition can be inadequate or inaccurate if its spatial profile shows a strong skewness or very
large wings. X and Y are simply computed as the first order moments of the profile:

X = x =

∑

i∈S
Iixi

∑

i∈S
Ii
, (13)

Y = y =

∑

i∈S
Iiyi

∑

i∈S
Ii
. (14)

Actually, xi and yi are summed relative to XMIN and YMIN in order to reduce roundoff errors in
the summing.

9.1.3 Position of the peak: XPEAK, YPEAK

It is sometimes useful to have the position XPEAK,YPEAK of the pixel with maximum intensity
in a detected object, for instance when working with likelihood maps, or when searching for
artifacts. For better robustness, PEAK coordinates are computed on filtered profiles if available.
On symetrical profiles, PEAK positions and barycenters coincide within a fraction of pixel (XPEAK
and YPEAK coordinates are quantized by steps of 1 pixel, thus XPEAK IMAGE and YPEAK IMAGE

are integers). This is no longer true for skewed profiles, therefore a simple comparison between
PEAK and barycenter coordinates can be used to identify asymetrical objects on well-sampled
images.

9.1.4 2nd order moments: X2, Y2, XY

(Centered) second-order moments are convenient for measuring the spatial spread of a source
profile. In SExtractor they are computed with:

X2 = x2 =

∑

i∈S
Iix

2
i

∑

i∈S
Ii
− x2, (15)

27

Y2 = y2 =

∑

i∈S
Iiy

2
i

∑

i∈S
Ii
− y2, (16)

XY = xy =

∑

i∈S
Iixiyi

∑

i∈S
Ii
− x y, (17)

These expressions are more subject to roundoff errors than if the 1st-order moments were sub-
tracted before summing, but allow both 1st and 2nd order moments to be computed in one pass.
Roundoff errors are however kept to a negligible value by measuring all positions relative here
again to XMIN and YMIN.

9.1.5 Basic shape parameters: A, B, THETA

These parameters are intended to describe the detected object as an elliptical shape. A and
B are its semi-major and semi-minor axis lengths, respectively. More precisely, they represent
the maximum and minimum spatial rms of the object profile along any direction. THETA is the
position-angle between the A axis and the NAXIS1 image axis. It is counted counter-clockwise.
Here is how they are computed:

2nd-order moments can easily be expressed in a referential rotated from the x, y image coordinate
system by an angle +θ:

x2
θ = cos2 θ x2 + sin2 θ y2 − 2 cos θ sin θ xy,

y2
θ = sin2 θ x2 + cos2 θ y2 + 2 cos θ sin θ xy,

xyθ = cos θ sin θ x2 − cos θ sin θ y2 + (cos2 θ − sin2 θ) xy.

(18)

One can find interesting angles θ0 for which the variance is minimized (or maximized) along xθ:

∂x2
θ

∂θ

∣∣∣∣∣
θ0

= 0, (19)

which leads to
2 cos θ sin θ0 (y2 − x2) + 2(cos2 θ0 − sin2 θ0) xy = 0. (20)

If y2 6= x2, this implies:

tan 2θ0 = 2
xy

x2 − y2
, (21)

a result which can also be obtained by requiring the covariance xyθ0 to be null. Over the domain
[−π/2,+π/2[, two different angles — with opposite signs — satisfy (21). By definition, THETA

is the position angle for which x2
θ is max imized. THETA is therefore the solution to (21) that has

the same sign as the covariance xy. A and B can now simply be expressed as:

A2 = x2
THETA, and (22)

B2 = y2
THETA. (23)

A and B can be computed directly from the 2nd-order moments, using the following equations
derived from (18) after some tedious arithmetics:

A2 =
x2 + y2

2
+

√√√√
(
x2 − y2

2

)2

+ xy2, (24)

28

B2 =
x2 + y2

2
−

√√√√
(
x2 − y2

2

)2

+ xy2. (25)

Note that A and B are exactly halves the a and b parameters computed by the COSMOS image
analyser (Stobie 1980,1986). Actually, a and b are defined by Stobie as the semi-major and
semi-minor axes of an elliptical shape with constant surface brightness, which would have the
same 2nd-order moments as the analysed object.

9.1.6 Ellipse parameters: CXX, CYY, CXY

A, B and THETA are not very convenient to use when, for instance, one wants to know if a
particular SExtractor detection extends over some position. For this kind of application,
three other ellipse parameters are provided; CXX, CYY and CXY. They do nothing more than
describing the same ellipse, but in a different way: the elliptical shape associated to a detection
is now parameterized as

CXX(x− x)2 + CYY(y − y)2 + CXY(x− x)(y − y) = R2, (26)

where R is a parameter which scales the ellipse, in units of A (or B). Generally, the isophotal
limit of a detected object is well represented by R ≈ 3 (Fig. 5). Ellipse parameters can be
derived from the 2nd order moments:

CXX =
cos2 THETA

A2
+

sin2 THETA

B2
=

y2

√(
x2−y2

2

)2

+ xy2

(27)

CYY =
sin2 THETA

A2
+

cos2 THETA

B2
=

x2

√(
x2−y2

2

)2

+ xy2

(28)

CXY = 2 cos THETA sin THETA

(
1

A2
− 1

B2

)
= −2

xy√(
x2−y2

2

)2

+ xy2

(29)

9.1.7 By-products of shape parameters: ELONGATION, ELLIPTICITY

15

These parameters are directly derived from A and B:

ELONGATION =
A

B
and (30)

ELLIPTICITY = 1− B

A
. (31)

9.1.8 Position errors: ERRX2, ERRY2, ERRXY, ERRA, ERRB, ERRTHETA, ERRCXX, ERRCYY,
ERRCXY

Uncertainties on the position of the barycenter can be estimated using photon statistics. Of
course, this kind of estimate has to be considered as a lower-value of the real error since it does

15Such parameters are dimensionless and therefore do not accept any IMAGE or WORLD suffix

29

THETA_IMAGE

A_I
MAG

E

B
_
I
M
A
G
E

����� �����	��
������� ������������� �����	��
������� ������������� �����	��
������� � �!��"� �#�%$'&(�

Figure 5: The meaning of basic shape parameters.

not include, for instance, the contribution of detection biases or the contamination by neighbours.
As SExtractor does not currently take into account possible correlations between pixels, the
variances simply write:

ERRX2 = var(x) =

∑

i∈S
σ2
i (xi − x)2

(∑

i∈S
Ii

)2 , (32)

ERRY2 = var(y) =

∑

i∈S
σ2
i (yi − y)2

(∑

i∈S
Ii

)2 , (33)

ERRXY = cov(x, y) =

∑

i∈S
σ2
i (xi − x)(yi − y)

(∑

i∈S
Ii

)2 . (34)

σi is the flux uncertainty estimated for pixel i:

σ2
i = σB

2
i +

Ii
gi
, (35)

where σBi is the local background noise and gi the local gain — conversion factor — for pixel
i (see §7 for more details). Major axis ERRA, minor axis ERRB, and position angle ERRTHETA of
the 1σ position error ellipse are computed from the covariance matrix exactly like in 9.1.5 for
shape parameters:

ERRA2 =
var(x) + var(y)

2
+

√(
var(x)− var(y)

2

)2

+ cov2(x, y), (36)

ERRB2 =
var(x) + var(y)

2
−
√(

var(x)− var(y)

2

)2

+ cov2(x, y), (37)

30

tan(2× ERRTHETA) = 2
cov(x, y)

var(x)− var(y)
. (38)

And the ellipse parameters are:

ERRCXX =
cos2 ERRTHETA

ERRA2 +
sin2 ERRTHETA

ERRB2 =
var(y)√(

var(x)−var(y)
2

)2
+ cov2(x, y)

, (39)

ERRCYY =
sin2 ERRTHETA

ERRA2 +
cos2 ERRTHETA

ERRB2 =
var(x)√(

var(x)−var(y)
2

)2
+ cov2(x, y)

, (40)

ERRCXY = 2 cos ERRTHETA sin ERRTHETA

(
1

ERRA2 −
1

ERRB2

)
(41)

= −2
cov(x, y)√(

var(x)−var(y)
2

)2
+ cov2(x, y)

. (42)

9.1.9 Handling of “infinitely thin” detections

Apart from the mathematical singularities that can be found in some of the above equations
describing shape parameters (and which SExtractor handles, of course), some detections with
very specific shapes may yield quite unphysical parameters, namely null values for B, ERRB, or
even A and ERRA. Such detections include single-pixel objects and horizontal, vertical or diagonal
lines which are 1-pixel wide. They will generally originate from glitches; but very undersampled
and/or low S/N genuine sources may also produce such shapes. How to handle them?

For basic shape parameters, the following convention was adopted: if the light distribution of
the object falls on one single pixel, or lies on a sufficiently thin line of pixels, which we translate
mathematically by

x2 y2 − xy2 < ρ2, (43)

then x2 and y2 are incremented by ρ. ρ is arbitrarily set to 1/12: this is the variance of a
1-dimensional top-hat distribution with unit width. Therefore 1/

√
12 represents the typical

minor-axis values assigned (in pixels units) to undersampled sources in SExtractor.

Positional errors are more difficult to handle, as objects with very high signal-to-noise can yield
extremely small position uncertainties, just like singular profiles do. Therefore SExtractor
first checks that (43) is true. If this is the case, a new test is conducted:

var(x) var(y)− covar2(x, y) < ρ2
e, (44)

where ρe is arbitrarily set to
(∑

i∈S σ
2
i

)
/ (
∑
i∈S Ii)

2. If (44) is true, then x2 and y2 are incre-
mented by ρe.

9.2 Astrometry and WORLD coordinates

All SExtractor measurements related to positions, distances and areas in the image, like
those described above can also be expressed in WORLD coordinates in the output catalog. These
parameters simply have the WORLD suffix instead of the IMAGE appended to them. The conver-
sion from IMAGE to WORLD coordinates is presently performed by using information found in the
FITS header of the measurement image, even if the parameter is originally computed from the
detection image (like the basic shape parameters for instance).

31

To understand how this is done in practice, let’s have a general look at the way the mapping
from IMAGE to WORLD coordinates is currently described in a FITS image header. First, a linear
transformation (involving most of the time only scaling and possibly rotation, and more rarely
shear) allows one to convert integer pixel positions (1,2,...) for each axis to some “projected”
coordinate system. This is where you might want to stop if your WORLD system is just some kind of
simple focal-plane coordinate-system (in meters for instance), or for a calibrated wavelength axis
(spectrum). Now, the FITS WCS (World Coordinate System) convention allows you to apply
to these “projected coordinates” a non-linear transformation, which is in fact a de-projection
back to “local” spherical (celestial) coordinates. Many types of projections are allowed by the
WCS convention, but the traditional tangential (gnomonic) projection is the most commonly
used. The last step of the transformation is to convert these local coordinates, still relative
to a projection reference point, to an absolute position in celestial longitude and latitude, for
instance right-ascension and declination. For this one needs to know the reference frame of the
coordinate system, which often requires some information about the equinox or the observation
date. At this level, all transformations are matters of spherical trigonometry.

9.2.1 Celestial coordinates

We will not describe here the transformations (α, δ) = f(x, y) themselves. SExtractor de-
projections rely on the WCSlib 2.4 written by Mark Calabretta, and all the details concerning
those can be found in Greisen & Calabretta (1995). In addition to the WORLD parameters, 3
purely angular “world” coordinates are available in SExtractor, expressed in decimal degrees:

1. SKY coordinates: strictly identical to WORLD coordinates, except that the units are ex-
plicitely degrees. They correspond to sky coordinates in the “native” system without any
precession correction, conversion, etc.

2. J2000 coordinates: precession corrections are applied in the FK5 system to convert to
J2000 coordinates if necessary.

3. B1950 coordinates: precession corrections are computed in the FK5 system and transfor-
mation to B1950 is applied.

Transformation to J2000 or B1950 is done without taking into account proper motions, which
are obviously unknown for the detected objects. In both cases, epoch 2000.0 is assumed.

Here is a list of catalog parameters currently supporting angular coordinates:

Image parameters World parameters Angular parameters

X IMAGE, Y IMAGE X WORLD, Y WORLD ALPHA SKY, DELTA SKY

ALPHA J2000, DELTA J2000

ALPHA B1950, DELTA B1950

XPEAK IMAGE, YPEAK IMAGE XPEAK WORLD, YPEAK WORLD ALPHAPEAK SKY, DELTAPEAK SKY

ALPHAPEAK J2000, DELTAPEAK J2000

ALPHAPEAK B1950, DELTAPEAK B1950

TBW

9.2.2 Use of the FITS keywords for astrometry

TBW

32

9.3 Photometry

SExtractor has currently the possibility to compute four types of magnitude: isophotal,
corrected-isophotal, fixed-aperture and adaptive-aperture. For all magnitudes, an additive “zero-
point” correction can be applied with the MAG ZEROPOINT keyword. Note that for each MAG XXXX,
a magnitude error estimate MAGERR XXXX, a linear FLUX XXXX measurement and its error estimate
FLUXERR XXXX are also available.

Isophotal magnitudes (MAG ISO) are computed simply, using the detection threshold as the
lowest isophote.

Corrected isophotal magnitudes (MAG ISOCOR) can be considered as a quick-and-dirty way
for retrieving the fraction of flux lost by isophotal magnitudes. Although their use is now depre-
cated, they have been kept in SExtractor 2.x and above for compatibility with SExtractor
1. If we make the assumption that the intensity profiles of the faint objects recorded on the
plate are roughly Gaussian because of atmospheric blurring, then the fraction η = Iiso

Itot
of the

total flux enclosed within a particular isophote reads (see Maddox et al. 1990):

(1− 1

η
) ln(1− η) =

A.t

Iiso
(45)

where A is the area and t the threshold related to this isophote. Eq. (45) is not analytically
invertible, but a good approximation to η (error < 10−2 for η > 0.4) can be done with the
second-order polynomial fit:

η ≈ 1− 0.1961
A.t

Iiso
− 0.7512

(
A.t

Iiso

)2

(46)

A “total” magnitude mtot estimate is then

mtot = miso + 2.5 log η (47)

Clearly this cheap correction works best with stars; and although it is shown to give tolerably
accurate results with most disk galaxies, it fails with ellipticals because of the broader wings of
their profiles.

Fixed-aperture magnitudes (MAG APER) estimate the flux above the background within a
circular aperture. The diameter of the aperture in pixels (PHOTOM APERTURES) is supplied by the
user (in fact it does not need to be an integer since each “normal” pixel is subdivided in 5 × 5
sub-pixels before measuring the flux within the aperture). If MAG APER is provided as a vector
MAG APER[n], at least n apertures must be specified with PHOTOM APERTURES.

Automatic aperture magnitudes (MAG AUTO) are intended to give the most precise estimate
of “total magnitudes”, at least for galaxies. SExtractor’s automatic aperture photometry
routine is inspired by Kron’s “first moment” algorithm (1980). (1) We define an elliptical
aperture whose elongation ε and position angle θ are defined by second order moments of the
object’s light distribution. The ellipse is scaled to Rmax.σiso (6σiso, which corresponds roughly
to 2 isophotal “radii”). (2) Within this aperture we compute the “first moment”:

r1 =

∑
rI(r)∑
I(r)

(48)

33

Kron (1980) and Infante (1987) have shown that for stars and galaxy profiles convolved with
Gaussian seeing, ≥ 90% of the flux is expected to lie within a circular aperture of radius kr1 if
k = 2, almost independently of their magnitude. This picture remains unchanged if we consider
an ellipse with εkr1 and kr1/ε as principal axes. k = 2 defines a sort of balance between
systematic and random errors. By choosing a larger k = 2.5, the mean fraction of flux lost
drops from about 10% to 6%. When Signal to Noise is low, it may appear that an erroneously
small aperture is taken by the algorithm. That’s why we have to bound the smallest accessible
aperture to Rmin (typically Rmin = 3− 4σiso). The user has full control over the parameters k
and Rmin through the configuration parameters PHOT AUTOPARAMS; by defaut, PHOT AUTOPARAMS

is set to 2.5,3.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16171819202122

M
ea

su
re

d
m

ag
. -

 T
ru

e
m

ag
.

True total magnitude

Isophotal
Automatic Aperture
Corrected Isophotal

Figure 6: Flux lost (expressed as a mean magnitude difference) with different faint-object pho-
tometry techniques as a function of total magnitude (see text). Only isolated galaxies (no blends)
of the simulations have been considered.

Aperture magnitudes are sensitive to crowding. In SExtractor 1, MAG AUTO measurements
were not very robust in that respect. It was therefore suggested to replace the aperture magni-
tude by the corrected-isophotal one when an object is too close to its neighbours (2 isopho-
tal radii for instance). This was done automatically when using the MAG BEST magnitude:
MAG BEST = MAG AUTO when it is sure that no neighbour can bias MAG AUTO by more than 10%, or
MAG BEST = MAG ISOCOR otherwise. Experience showed that the MAG ISOCOR and MAG AUTO mag-
nitude would loose about the same fraction of flux on stars or compact galaxy profiles: around
0.06 % for default extraction parameters. The use of MAG BEST is now deprecated as MAG AUTO

measurements are much more robust in versions 2.x of SExtractor. The first improvement is
a crude subtraction of all the neighbours which have been detected around the measured source
(the MASK TYPE BLANK option). The second improvement is an automatic correction of parts of
the aperture which are suspected from contamination by a neighbour by mirroring the oppo-
site, cleaner side of the measurement ellipse if available (the MASK TYPE CORRECT option, which
is also the default). Figure 6 shows the mean loss of flux measured with isophotal (threshold
= 24.4 mag.arsec−2), corrected isophotal and automatic aperture photometries for simulated
galaxy BJ on a typical Schmidt-survey plate image.

Photographic photometry In DETECT TYPE PHOTO mode, SExtractor assumes that the
response of the detector, over the dynamic range of the image, is logarithmic. This is generally
a good approximation for photographic density on deep exposures. Photometric procedures

34

described above remain unchanged, except that for each pixel we apply first the transformation

I = I0.10
D
γ (49)

where γ (= MAG GAMMA is the contrast index of the emulsion, D the original pixel value from the
background-subtracted image, and I0 is computed from the magnitude zero-point m0:

I0 =
γ

ln 10
.10−0.4m0 (50)

One advantage of using a density-to-intensity transformation relative to the local sky background
is that it corrects (to some extent) large-scale inhomogeneities in sensitivity (see Bertin 1996 for
details).

Errors on magnitude An estimate of the error16 is available for each type of magnitude. It
is computed through

∆m = 1.0857

√
Aσ2 + F

g

F
(51)

where A is the area (in pixels) over which the total flux F (in ADU) is summed, σ the standard
deviation of noise (in ADU) estimated from the background, and g the detector gain (GAIN
parameter17 , in e−/ADU). For corrected-isophotal magnitudes, a term, derived from Eq. 46 is
quadratically added to take into account the error on the correction itself.

In DETECT TYPE PHOTO mode, things are slightly more complex. Making the assumption that
plate-noise is the major contributor to photometric errors, and that it is roughly constant in
density, we can write:

∆m = 1.0857
σ ln 10

√∑
x,y I

2(x, y)

γ
∑
x,y I(x, y)

(52)

where I(x, y) is the contribution of pixel (x, y) to the total flux (Eq. 49). The GAIN is ignored
in PHOTO mode.

Background is the last point relative to photometry. The assumption made in §6.1 — that
the “local” background associated to an object can be interpolated from the global background
map — is no longer valid in crowded regions. An example is a globular cluster superimposed on
a bulge of galaxy. SExtractor offers the possibility to estimate locally the background used
to compute magnitudes. When this option is switched on (BACKPHOTO TYPE LOCAL instead of
GLOBAL), the “photometric” background is estimated within a “rectangular annulus” around the
isophotal limits of the object. The thickness of the annulus (in pixels) can be specified by the
user with BACKPHOTO SIZE. 24 is a typical value.

9.4 Cross-identification within SExtractor

SExtractor allows one to perform on-line cross-identification of each detection with an ASCII

list. Although the cross-identification algorithm is not very sophisticated — it works in pixel-
coordinates only —, it is particularly convenient for assessing SExtractor performances, on
image simulations from instance. Configuration parameters related to cross-identification are
prefixed with ASSOC.

16Important: this error must be considered only as a lower value since it does not take into account the (complex)
uncertainty on the local background estimate.

17Setting GAIN to 0 in the configuration file is equivalent to g = +∞

35

9.4.1 The ASSOC list

The ASSOC process is initiated by requesting in the parameter file at least one of the ASSOC catalog
parameters: VECTOR ASSOC and NUMBER ASSOC. Then SExtractor looks for an ASCII file (let’s
call it the ASSOC list) whose file name has to be specified by the ASSOC NAME configuration
keyword. The ASSOC list must contain columns of numbers separated by spaces or tabs. Each
line describes a source that will enter the cross-identification process. Lines with zero characters,
or beginning with “#” (for comments) are ignored. This means you may use any ASCII catalog
generated by a previous SExtractor run as an ASSOC list.

To perform the cross-identification, SExtractor needs to know what are the columns that con-
tain the x and y coordinates18 in the ASSOC list. These shall be specified using the ASSOC PARAMS

configuration parameter. The syntax is: “ASSOC PARAMS cx,cy[,cZ]”, where cx and cy are the
positions of the columns containing the x and y coordinates (the first column has position 1).
cZ (optional) specifies an extra column containing some “Z” parameter that may be used for
controlling or weighting the ASSOC process. Z will typically be a flux estimate. cZ is required if
ASSOC TYPE is MIN, MAX, MEAN or MAG MEAN (see below).

9.4.2 Controlling the ASSOC process

Two configuration parameters control the ASSOC process. The first one, ASSOC RADIUS, accepts
a decimal number which represents the maximum distance (in pixels) one should have between
the barycenter of the current SExtractor detection and an ASSOC-list member to consider
a match. This number must of course account for positional uncertainties in both catalogs.
In most cases, a value of a few pixels will do just fine. The second configuration parameter,
ASSOC TYPE, accepts a keyword as argument and selects the kind of identification procedure one
wants to operate:

• FIRST: this is the simplest way of performing a cross-identification. It does not require
the cZ column in ASSOC PARAMS. The first geometrical match encountered while scanning
the ASSOC list is retained as the actual match. This can used for catalogs with low spatial
density.

• NEAREST: this option does not require the cZ column in ASSOC PARAMS. The match is
performed with the ASSOC-list member the closest (in position) to the current detection,
provided that it lies within the ASSOC RADIUS.

• SUM: all parameters issued from ASSOC-list members which geometrically match the current
detection are summed. cZ is not required.

• MAG SUM: all parameters ci issued from ASSOC-list members which geometrically match the
current detection are combined using the following law: −2.5 log(

∑
i 10−0.4ci . This option

allows one to sum flux contributions from magnitude data. cZ is not required.

• MIN: among all geometrical matches, retains the ASSOC-list member which has the smallest
Z parameter.

• MAX: among all geometrical matches, retains the ASSOC-list member which has the largest
Z parameter.

18The x and y coordinates must comply with the FITS (and SExtractor) convention: by definition, the
center of the first pixel in the image array has pixel-coordinates (1.0,1.0).

36

• MEAN: all parameters issued from ASSOC-list members which geometrically match the cur-
rent detection are weighted-averaged, using the Z parameter as the weight.

• MAG MEAN: all parameters issued from ASSOC-list members which geometrically match the
current detection are weighted-averaged, using 10−0.4Z as the weight. This option is useful
for weighting catalog sources with magnitudes.

9.4.3 Output from ASSOC

Now that we have described the cross-identification process, let’s see how informations coming
from the matching with the ASSOC list are propagated to the output SExtractor catalog.

The output of ASSOC data in SExtractor catalog is done through the VECTOR ASSOC() cata-
log parameter. VECTOR ASSOC() is a vector, each element of which refers to a column from the
input ASSOC list. VECTOR ASSOC() contains either ASSOC-list member data from the best match
(if ASSOC TYPE is FIRST, NEAREST, MIN or MAX), or a combination of ASSOC-list member data
(if ASSOC TYPE is MEAN, MAG MEAN, SUM or MAG SUM). If no match has been found, it just con-
tains zeros. The NUMBER ASSOC contains the number of ASSOC-list members that geometrically
match the current SExtractor detection, and obviously, if different from zero, indicates that
VECTOR ASSOC() has a meaningful content.

The ASSOC DATA configuration parameter is used to tell SExtractor to which column refers
each element of VECTOR ASSOC(). The syntax of ASSOC DATA is similar to that of ASSOC PARAMS:
“ASSOC DATA c1,c2,c3,...” where the ci are the column positions in the ASSOC list. The special
case “ASSOC DATA 0” tells SExtractor to propagate all columns from the ASSOC file to the
output catalog.

There are situations where it might be desirable to keep in the output SExtractor catalog only
those detections that were matched with some ASSOC-list member. Such a feature is controlled
by the ASSOCSELEC TYPE configuration parameter, which accepts one of the three following
keywords:

• ALL: keep all SExtractor detections, regardless of matching. This is the default.

• MATCHED: keep only SExtractor detections that were matched with at least one ASSOC-
list member.

• -MATCHED: keep only SExtractor detections that were not matched with any ASSOC-list
member.

Acknowledgments

References

[1] Beard S.M., McGillivray H.T., Thanisch P.F., 1990, MNRAS 247, 311

[2] Bertin E., E.y.E 1.1, User’s manual, 1997, Leiden

[3] Bertin E., WeightWatcher 1.2, User’s manual, 1997, ESO

[4] Bijaoui A., Dantel M., 1991, A&A 6, 51

37

[5] Bijaoui A., Slezak E., Vandame B., 1998, in Astrophysics and Algorithms: a DIMACS
Workshop on Massive Astronomical Data Sets

[6] Dalcanton J.J., Spergel D.N., Gunn J.E., Schmidt M., Schneider D.P., 1997, AJ, 114, 635

[7] Das P.K., 1991, Optical Signal Processing, (Springer-Verlag)

[8] Greisen E.W., Calabretta M., 1995, ADASS 4, 233

[9] Infante L., 1987, A&A 183, 177

[10] Irwin M.J., 1985, MNRAS 214, 575

[11] Jarvis J.J., Tyson J.A., 1981, AJ, 86, 476

[12] Kaiser N., Squires G., Broadhurst T., 1995, ApJ, 449, 460

[13] Kendall M., Stuart K., 1977, The Advanced Theory of Statistics, Vol. 1, (Charles Griffin
& Co., London)

[14] Kron R.G., 1980, ApJS 43, 305

[15] Lutz R.K., 1979, The Computer Journal 23, 262

[16] Moffat A.F.J., 1969,

[17] Wells D.C., Greisen E.W., Harten R.H., 1981, A&AS 44, 363

A Appendices

A.1 FAQ (Frequently Asked Questions)

Fairly often, I am asked by users about the reason for some limitations or choices in the way
things are done in SExtractor. In this section, I try to justify them.

Q: SExtractor supports WCS. So why isn’t it possible to have the ASSOC cross-
identification working in α, δ (or any other world-coordinates)?

A: The ASSOC list which is used for cross-identification can be very long (100,000 objects or
more). Performing an exhaustive cross-id in real-time can therefore be extremely slow, unless
the ASSOC coordinates are sorted in some way beforehand. In pixel coordinates, such a sorting
is simple and very efficient, as SExtractor works line-by-line; but it would be much more
difficult in the general WCS context. This is why this hasn’t been implemented, considering it
as beyond the scope of SExtractor.

Q: Why isn’t the detection threshold expressed in units of the background noise
standard deviation in the FILTERed image ?

A: There are two reasons for this. First, it makes the threshold independent of the choice of a
FILTER, which is a good thing. Second, having σ measured on the FILTERed image may have
given un-informed users the wrong impression that increasing filtering systematically improves
the detectability of any source, whereas it depends on scale.

38

