Astronomía Extragaláctica Cap. 5: Galaxias elípticas

Profesor: Favio R. Faifer & Sergio A. Cellone

Facultad de Ciencias Astronómicas y Geofísicas

Universidad Nacional de La Plata, Argentina

curso 2024

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cap. 5: Galaxias elípticas

(ロ) (同) (三) (三) (三) (○) (○)

- 2 Sistemas no colisionales
- 3 Distribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- 7 Agujeros negros supermasivos centrales

Cap. 5: Galaxias elípticas

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 Consideraciones generales

- 2 Sistemas no colisionales
- 3 Distribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- Agujeros negros supermasivos centrales

Consideraciones generales

< ∃⇒

NGC 1132. Créditos: M. West (ESO, Chile), NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration.

Consideraciones generales

Algunas definiciones

(ロ) (同) (三) (三) (三) (○) (○)

- isofotas regulares (circulares o elípticas)
- distribución suave de luz
- sin regiones de formación estelar y polvo
- casi sin Hı
- sin discos prominentes

Esta simplicidad es solo aparente:

- las E cubren un rango enorme de ${\cal L}~(10^5-10^{12}~{\cal L}_{\odot})$ y concentración
- algunas rotan rápido, otras casi nada
- algunas serían oblongas, otras triaxiales
- algunas son fuertes emisores en X y/o continuo de radio

Consideraciones generales

Algunas definiciones

(ロ) (同) (三) (三) (三) (○) (○)

- isofotas regulares (circulares o elípticas)
- distribución suave de luz
- sin regiones de formación estelar y polvo
- casi sin Hı
- sin discos prominentes
- Esta simplicidad es solo aparente:
 - las E cubren un rango enorme de ${\cal L}~(10^5-10^{12}~{\cal L}_{\odot})~y$ concentración
 - algunas rotan rápido, otras casi nada
 - algunas serían oblongas, otras triaxiales
 - algunas son fuertes emisores en X y/o continuo de radio

Cap. 5: Galaxias elípticas

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 Sistemas no colisionales

- 3 Distribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- Agujeros negros supermasivos centrales

Algunas definiciones

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 Tiempo de cruce (o tiempo dinámico): es el tiempo necesario para atravesar todo el sistema.

$$t_{cruce} = R/v = \left(\frac{R^3}{GM}\right)^{1/2} \tag{1}$$

 Tiempo de relajación: es el tiempo necesario para que los encuentros entre las partículas que componen el sistema borren completamente la memoria de las velocidades iniciales del sistema.

$$t_{relax} \sim \left(rac{R^3}{GM}
ight)^{1/2} rac{N}{8lnN} = t_{cruce} rac{N}{8lnN}$$
 (2)

Algunas definiciones

(ロ) (同) (三) (三) (三) (○) (○)

 Tiempo de cruce (o tiempo dinámico): es el tiempo necesario para atravesar todo el sistema.

$$t_{cruce} = R/v = \left(\frac{R^3}{GM}\right)^{1/2} \tag{1}$$

 Tiempo de relajación: es el tiempo necesario para que los encuentros entre las partículas que componen el sistema borren completamente la memoria de las velocidades iniciales del sistema.

$$t_{relax} \sim \left(\frac{R^3}{GM}\right)^{1/2} \frac{N}{8lnN} = t_{cruce} \frac{N}{8lnN}$$
 (2)

Algunas definiciones

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Para una galaxia E $\rightarrow t_{cruce} \sim 10^8$ años $(t_{cruce} < T_{Hubble})$

- Para un CG $\rightarrow t_{relax} \sim 10^9$ años ($t_{relax} < t_{Hubble}$) \rightarrow sistema colisional.
- Para una E $\rightarrow t_{relax} \sim 10^{12}$ años ($t_{relax} > t_{Hubble}$) \rightarrow sistema no colisional!

Algunas definiciones

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- Para una galaxia E $\rightarrow t_{cruce} \sim 10^8$ años $(t_{cruce} < T_{Hubble})$
- Para un CG $\rightarrow t_{relax} \sim 10^9$ años ($t_{relax} < t_{Hubble}$) \rightarrow sistema colisional.
- Para una E $\rightarrow t_{relax} \sim 10^{12}$ años ($t_{relax} > t_{Hubble}$) \rightarrow sistema no colisional!

Algunas definiciones

(ロ) (同) (三) (三) (三) (○) (○)

- Para una galaxia E $\rightarrow t_{cruce} \sim 10^8$ años $(t_{cruce} < T_{Hubble})$
- Para un CG $\rightarrow t_{relax} \sim 10^9$ años ($t_{relax} < t_{Hubble}$) \rightarrow sistema colisional.
- Para una E \rightarrow $t_{relax} \sim 10^{12}$ años ($t_{relax} > t_{Hubble}$) \rightarrow sistema no colisional!

Cap. 5: Galaxias elípticas

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Sistemas no colisionales
- Oistribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- Agujeros negros supermasivos centrales

Perfiles de brillo

(ロ) (同) (三) (三) (三) (○) (○)

Elípticas gigantes: $\mathcal{L} \gtrsim \mathcal{L}^* \approx 2 \times 10^{10} \mathcal{L}_{\odot} (\equiv M_B \approx -20)$ Elípticas de luminosidad intermedia: $3 \times 10^9 \mathcal{L}_{\odot} \lesssim \mathcal{L} \lesssim \mathcal{L}^*$, o sea $-20 \lesssim M_B \lesssim -18$ Elípticas enanas: $\mathcal{L} \lesssim 3 \times 10^9 \mathcal{L}_{\odot}$, o sea $M_B \gtrsim -18$.

Perfiles de brillo NGC 1399 y G 675 (Abell 2572)

Fig 6.3 (Saglia, Caon) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Perfiles de brillo VCC 753

▲口▶▲圖▶▲圖▶▲圖▶ 圖 の文(で)

Perfiles de brillo: zona central

Perfiles "core" y "cusp" (o power law)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Perfiles de brillo: zona central

Perfiles "core" y "cusp" (o power law)

Perfil "Nuker" (Lauer et al., 1995)

$$I(r) = I_b 2^{(\beta - \gamma)/\alpha} \left(\frac{r}{r_b}\right)^{-\gamma} \left[1 + \left(\frac{r}{r_b}\right)^{\alpha}\right]^{(\gamma - \beta)/\alpha}$$

Perfil "Core-Sérsic" (Graham et al., 2003)

$$I(r) = I' \left[1 + \left(\frac{r_b}{r}\right)^{\alpha} \right]^{\gamma/\alpha} \exp\left[-b_n \left(\frac{r^{\alpha} + r_b^{\alpha}}{r_e^{\alpha}}\right)^{1/(\alpha n)} \right]$$

$$I' = I_b 2^{-\gamma/\alpha} \exp\left[b_n \left(2^{1/\alpha} r_b / r_e\right)^{1/n}\right]$$

(Lauer et al., 1995)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Galaxias dominantes - cD

Fig 6.4 (CFHT/J.-C. Cuillandre/Coelum) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Fig 6.4 (D. Malin) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Galaxias dominantes - cD

Fig 6.4 (CFHT/J.-C. Cuillandre/Coelum) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Fig 6.4 (D. Malin) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Perfiles de brillo galaxias cD

E normal - cD en cúmulo rico - cD en cúmulo pobre

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Luz intra-cúmulo M87 - Virgo

・ロト・日本・日本・日本・日本・日本

Luz intra-cúmulo M87 - Virgo

・ロト・(四ト・(川下・(日下)))

Galaxias elípticas: rotación de isofotas

Fig 6.1 (R. de Jong) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Elipsoide:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \qquad (3)$$

con *a* > 0, *b* > 0 y *c* > 0.

Esferoides: elipsoides de revolución, es decir, la superficie que se obtiene al girar una elipse alrededor de uno de sus ejes principales $(z) \rightarrow a = b$.

- Si *a* > *c*, se tiene un esferoide oblato (forma de lenteja).
- Si a < c, se tiene un esferoide prolato u oblongo (similar a una pelota de rugby).

・ロット (雪) (日) (日)

Galaxias elípticas: rotación de isofotas

• E de luminosidad intermedia ($M_B \gtrsim -20$) $\rightarrow \langle q \rangle \approx 0.75 \Rightarrow 0.55 \lesssim Q \lesssim 0.7$ (si son oblatos).

E de alta luminosidad (L ≥ L* o sea M_B ≤ -20)
 → ⟨q⟩ ≈ 0.85. Muy pocas se ven circulares (q ≈ 1)
 ⇒ ninguna distribución de elipsoides oblatos reproduce la distribución observada de q ⇒ sistemas triaxiales.

Rotación de isofotas

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Analogía en 2-D

Fig 6.10 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Isofotas disky y boxy

FIGURE 3. — Distribution of the ellipticity classes for all observed elliptical galaxies.

FIGURE 5. — Schematic drawing illustrating isophotes with a(4)/a = +0.1 and a(4)/a = -0.1.

FIGURE 6. — R-image of NGC 4660, an elliptical galaxy with a disk-component in the isophotes $(a(4)/a \sim +0.03)$.

FIGURE 7. — R-image of NGC 5322, an elliptical galaxy with box-shaped isophotes $(a(4)/a \sim -0.01)$.

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Cap. 5: Galaxias elípticas

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Sistemas no colisionales
- 3 Distribución de brillo superficial

4 Cinemática

- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- Agujeros negros supermasivos centrales

Espectro de ranura larga GMOS NGC 3115

Sac

Espectro de ranura larga GMOS NGC 1399

Wavelength

La dispersión de velocidades

Ensanchamiento de las líneas

(Barth et al., 2002, AJ, 124, 2607.)

 $R = \frac{\lambda}{\delta\lambda} = \frac{\lambda}{2.35\sigma_{\lambda}}$ $R = \frac{\lambda}{\delta\lambda} = \frac{c}{2.35\sigma_{\nu}}$ $R \gtrsim 5000$ $\Rightarrow \quad \sigma_{\nu} \lesssim 25 \text{ km s}^{-1}$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Curvas de $v_{\rm R}$ y σ_v NGC 1399

Fig 6.12 (A. Graham) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

ヘロト ヘ回ト ヘヨト ヘヨト æ

Espectroscopía de campo integral (IFU): CALIFA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Rotación Teorema del Virial

$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)

$$\rho(X) = \rho(m^{2}), \ \operatorname{con} m^{2} = \frac{x^{2} + y^{2}}{A^{2}} + \frac{z^{2}}{B^{2}} \quad (A \ge B > 0),$$

$$\langle \mathcal{T}_{XX} \rangle = \langle \mathcal{T}_{YY} \rangle, \qquad \langle \Omega_{XX} \rangle = \langle \Omega_{YY} \rangle$$
(5)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} = \frac{\langle \mathcal{T}_{ZZ} \rangle}{\langle \mathcal{T}_{XX} \rangle} \approx \frac{\sigma^{2}_{Z}}{\frac{1}{2}v^{2} + \sigma^{2}_{X}},$$
(6)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1 - \epsilon)^{0.9}.$$

$$V_{\text{max}} = (V) = \pi^{\pi} \sqrt{2[(1 - \epsilon)^{-0.9} - 1]}$$
(7)

$$\left(\frac{v}{\sigma}\right)_{\star} = \frac{\left(\frac{v_{\max}}{\sigma}\right)}{\left(\frac{v}{\sigma}\right)_{iso}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Rotación Teorema del Virial

$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)

$$\rho(\mathbf{x}) = \rho(m^2), \text{ con } m^2 = \frac{x^2 + y^2}{A^2} + \frac{z^2}{B^2} \quad (A \ge B > 0),$$

$$\langle \mathcal{T}_{XX} \rangle = \langle \mathcal{T}_{YY} \rangle, \qquad \langle \Omega_{XX} \rangle = \langle \Omega_{YY} \rangle$$
(5)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} = \frac{\langle \mathcal{T}_{ZZ} \rangle}{\langle \mathcal{T}_{XX} \rangle} \approx \frac{\sigma_z^2}{\frac{1}{2} v^2 + \sigma_x^2},$$
(6)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1 - \epsilon)^{0.9}.$$

$$\frac{v_{\text{max}}}{\sigma} = \left(\frac{v}{\sigma}\right)_{\text{iso}} = \frac{\pi}{4} \sqrt{2\left[(1 - \epsilon)^{-0.9} - 1\right]}$$
(7)

$$\left(\frac{v}{\sigma}\right)_* = \frac{\left(\frac{v_{\text{max}}}{\sigma}\right)}{\left(\frac{v}{\sigma}\right)_{\text{iso}}}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Rotación Teorema del Virial

$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)
$$\rho(\mathbf{x}) = \rho(m^2), \text{ con } m^2 = \frac{x^2 + y^2}{A^2} + \frac{z^2}{B^2} \quad (A \ge B > 0), \\\langle \mathcal{T}_{XX} \rangle = \langle \mathcal{T}_{YY} \rangle, \qquad \langle \Omega_{XX} \rangle = \langle \Omega_{YY} \rangle$$
(5)
$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} = \frac{\langle \mathcal{T}_{ZZ} \rangle}{\langle \mathcal{T}_{XX} \rangle} \approx \frac{\sigma_z^2}{\frac{1}{2}v^2 + \sigma_x^2},$$
(6)
$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1 - \epsilon)^{0.9}.$$
$$\frac{v_{\text{max}}}{\sigma} = \left(\frac{v}{\sigma}\right)_{\text{iso}} = \frac{\pi}{4}\sqrt{2\left[(1 - \epsilon)^{-0.9} - 1\right]}$$
(7)
$$\left(\frac{v}{\sigma}\right)_* = \frac{\left(\frac{v_{\text{max}}}{\sigma}\right)}{\left(\frac{v}{\sigma}\right)_{\text{iso}}}$$
$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)

$$\rho(\mathbf{x}) = \rho(m^2), \ \mathrm{con} \ m^2 = \frac{x^2 + y^2}{A^2} + \frac{z^2}{B^2} \quad (A \ge B > 0),$$

$$\langle \mathcal{T}_{xx} \rangle = \langle \mathcal{T}_{yy} \rangle, \qquad \langle \Omega_{xx} \rangle = \langle \Omega_{yy} \rangle$$
 (5)

$$\frac{\langle \Omega_{zz} \rangle}{\langle \Omega_{xx} \rangle} = \frac{\langle \mathcal{T}_{zz} \rangle}{\langle \mathcal{T}_{xx} \rangle} \approx \frac{\sigma_z^2}{\frac{1}{2} v^2 + \sigma_x^2},\tag{6}$$

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1-\epsilon)^{0.9}.$$

$$\frac{v_{\text{max}}}{\sigma} = \left(\frac{v}{\sigma}\right)_{\text{iso}} = \frac{\pi}{4}\sqrt{2\left[(1-\epsilon)^{-0.9} - 1\right]} \tag{7}$$

$$\left(\frac{v}{\sigma}\right)_{\star} = \frac{\left(\frac{v_{\max}}{\sigma}\right)}{\left(\frac{v}{\sigma}\right)_{iso}}$$

$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)

$$\rho(\mathbf{x}) = \rho(m^2), \ \operatorname{con} m^2 = \frac{x^2 + y^2}{A^2} + \frac{z^2}{B^2} \quad (A \ge B > 0),$$

$$\langle \mathcal{T}_{xx} \rangle = \langle \mathcal{T}_{yy} \rangle, \qquad \langle \Omega_{xx} \rangle = \langle \Omega_{yy} \rangle$$
 (5)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} = \frac{\langle \mathcal{T}_{ZZ} \rangle}{\langle \mathcal{T}_{XX} \rangle} \approx \frac{\sigma_z^2}{\frac{1}{2} v^2 + \sigma_x^2}, \tag{6}$$
$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1 - \epsilon)^{0.9}.$$
$$\frac{\chi}{2} = \left(\frac{v}{\sigma}\right)_{iso} = \frac{\pi}{4} \sqrt{2 \left[(1 - \epsilon)^{-0.9} - 1\right]} \tag{7}$$

$$\left(\frac{v}{\sigma}\right)_{\star} = \frac{\left(\frac{v_{\max}}{\sigma}\right)}{\left(\frac{v}{\sigma}\right)_{iso}}$$

$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)

$$\rho(\mathbf{x}) = \rho(m^2), \ \mathrm{con} \ m^2 = \frac{x^2 + y^2}{A^2} + \frac{z^2}{B^2} \quad (A \ge B > 0),$$

$$\langle \mathcal{T}_{xx} \rangle = \langle \mathcal{T}_{yy} \rangle, \qquad \langle \Omega_{xx} \rangle = \langle \Omega_{yy} \rangle$$
 (5)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} = \frac{\langle \mathcal{T}_{ZZ} \rangle}{\langle \mathcal{T}_{XX} \rangle} \approx \frac{\sigma_Z^2}{\frac{1}{2} \nu^2 + \sigma_X^2}, \tag{6}$$
$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1 - \epsilon)^{0.9}.$$
$$\frac{\nu_{\text{max}}}{\sigma} = \left(\frac{\nu}{\sigma}\right)_{\text{iso}} = \frac{\pi}{4} \sqrt{2 \left[(1 - \epsilon)^{-0.9} - 1\right]} \tag{7}$$

$$\left(\frac{V}{\sigma}\right)_{\star} = \frac{\left(\frac{V_{\max}}{\sigma}\right)}{\left(\frac{V}{\sigma}\right)_{iso}}$$

$$2\langle \mathcal{T}_{XX} \rangle + \langle \Omega_{XX} \rangle = 0, \qquad 2\langle \mathcal{T}_{YY} \rangle + \langle \Omega_{YY} \rangle = 0, \qquad 2\langle \mathcal{T}_{ZZ} \rangle + \langle \Omega_{ZZ} \rangle = 0.$$
(4)

$$\rho(\mathbf{x}) = \rho(m^2), \ \operatorname{con} m^2 = \frac{x^2 + y^2}{A^2} + \frac{z^2}{B^2} \quad (A \ge B > 0),$$

$$\langle \mathcal{T}_{xx} \rangle = \langle \mathcal{T}_{yy} \rangle, \qquad \langle \Omega_{xx} \rangle = \langle \Omega_{yy} \rangle$$
 (5)

$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} = \frac{\langle \mathcal{T}_{ZZ} \rangle}{\langle \mathcal{T}_{XX} \rangle} \approx \frac{\sigma_z^2}{\frac{1}{2} v^2 + \sigma_x^2}, \tag{6}$$
$$\frac{\langle \Omega_{ZZ} \rangle}{\langle \Omega_{XX} \rangle} \approx \left(\frac{B}{A}\right)^{0.9} = (1 - \epsilon)^{0.9}.$$

$$\frac{v_{\text{max}}}{\sigma} = \left(\frac{v}{\sigma}\right)_{\text{iso}} = \frac{\pi}{4}\sqrt{2\left[(1-\epsilon)^{-0.9} - 1\right]}$$
(7)

$$\left(\frac{\mathbf{v}}{\sigma}\right)_{\star} = \frac{\left(\frac{\mathbf{v}_{\max}}{\sigma}\right)}{\left(\frac{\mathbf{v}}{\sigma}\right)_{iso}}$$

Rotación Inclinación

$$Q^2 \operatorname{sen}^2 i + \cos^2 i = \begin{cases} q^2 & \text{(obl.)} \\ 1/q^2 & \text{(prol.)} \end{cases}$$
(8)

Para el caso oblato se puede escribir:

$$\left(\frac{b}{a}\right)^{2} = \left(\frac{B}{A}\right)^{2} \operatorname{sen}^{2} i + 1 - \operatorname{sen}^{2} i = \left[\left(\frac{B}{A}\right)^{2} - 1\right] \operatorname{sen}^{2} i + 1 \quad \Rightarrow$$
$$\Rightarrow \quad e^{2} = 1 - \left(\frac{b}{a}\right)^{2} = \left[1 - \left(\frac{B}{A}\right)^{2}\right] \operatorname{sen}^{2} i.$$

Aparte,

$$e^2 = 1 - \left(rac{b}{a}
ight)^2 = 1 - (1 - \epsilon)^2 = 1 - (1 - 2\epsilon + \epsilon^2) \approx 2\epsilon \quad (\mathrm{si}\;\epsilon \ll 1).$$

O sea:

$$2\epsilon \approx \left[1 - \left(\frac{B}{A}\right)^2\right] \operatorname{sen}^2 i.$$

Rotación Inclinación

$$Q^2 \operatorname{sen}^2 i + \cos^2 i = \begin{cases} q^2 & \text{(obl.)} \\ 1/q^2 & \text{(prol.)} \end{cases}$$
(8)

Para el caso oblato se puede escribir:

$$\left(\frac{b}{a}\right)^{2} = \left(\frac{B}{A}\right)^{2} \operatorname{sen}^{2} i + 1 - \operatorname{sen}^{2} i = \left[\left(\frac{B}{A}\right)^{2} - 1\right] \operatorname{sen}^{2} i + 1 \quad \Rightarrow$$
$$\Rightarrow \quad e^{2} = 1 - \left(\frac{b}{a}\right)^{2} = \left[1 - \left(\frac{B}{A}\right)^{2}\right] \operatorname{sen}^{2} i.$$

Aparte,

$$e^2 = 1 - \left(rac{b}{a}
ight)^2 = 1 - (1 - \epsilon)^2 = 1 - (1 - 2\epsilon + \epsilon^2) pprox 2\epsilon \quad (\mathrm{si}\;\epsilon \ll 1).$$

O sea:

$$2\epsilon \approx \left[1 - \left(\frac{B}{A}\right)^2\right] \operatorname{sen}^2 i.$$

◆□ → ◆□ → ◆三 → ◆三 → ●● ◆○ ◆

Diagrama cinemático para rotadores isótropos

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへ⊙

Relación entre cinemática y morfología

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Cap. 5: Galaxias elípticas

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 2 Sistemas no colisionales
- 3 Distribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- 7 Agujeros negros supermasivos centrales

Sistemas esferoidales

Fig 6.6 (Kormendy, Philipps) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のQで

Sistemas esferoidales

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Sistemas esferoidales

(Norris et al. 2014, MNRAS 443, 1151)

Sistemas esferoidales

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$R_{\rm e} \propto \langle I_{\rm e} \rangle^{-0.83 \pm 0.08} \rightarrow \langle I_{\rm e} \rangle \propto R_{\rm e}^{-1.2}$$
(9)
$$= \pi \langle I_{\rm e} \rangle R_{\rm e}^2 \rightarrow \mathcal{L} \propto \langle I_{\rm e} \rangle^{-\frac{2}{3}} \Rightarrow \langle I_{\rm e} \rangle \propto \mathcal{L}^{-\frac{3}{2}}.$$
(10)

Las E brillantes y de \mathcal{L} intermedia tienen I_0 más débil y r_c mayor a mayor \mathcal{L} , mientras que las enanas siguen relaciones inversas.

Sistemas esferoidales

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$R_{\rm e} \propto \langle I_{\rm e} \rangle^{-0.83 \pm 0.08} \quad \rightarrow \quad \langle I_{\rm e} \rangle \propto R_{\rm e}^{-1.2}$$
 (9)

$$\frac{\mathcal{L}}{2} = \pi \langle I_{\mathsf{e}} \rangle R_{\mathsf{e}}^2 \quad \rightarrow \quad \mathcal{L} \propto \langle I_{\mathsf{e}} \rangle^{-\frac{2}{3}} \quad \Rightarrow \quad \langle I_{\mathsf{e}} \rangle \propto \mathcal{L}^{-\frac{3}{2}}.$$
(10)

Las E brillantes y de \mathcal{L} intermedia tienen I_0 más débil y r_c mayor a mayor \mathcal{L} , mientras que las enanas siguen relaciones inversas.

Relación Faber-Jackson

A D > A P > A D > A D >

FIG. 16.—Line-of-sight velocity dispersions versus absolute magnitude from Table 1. The point with smallest velocity corresponds to M32, for which the velocity dispersion (60 km s⁻¹) was taken from Richstone and Sargent (1972).

$$\frac{\mathcal{L}_V}{2 \times 10^{10} \mathcal{L}_{\odot}} \approx \left(\frac{\sigma_0}{200 \text{ km s}^{-1}}\right)^4$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$-0.65 \log(R_{\rm e}) + 0.22 \langle \mu_{\rm e} \rangle + 0.86 \log(\sigma_0) = 0.$$
 (11)

$$\log(R_{\rm e}) = 0.34 \langle \mu_{\rm e} \rangle + 1.3 \log(\sigma_0). \tag{12}$$

$$\log(R_{\rm e}) = -0.34 \times 2.5 \, \log\langle I_{\rm e} \rangle + 1.3 \, \log(\sigma_0) = \log\left(\frac{\sigma_0^{1.3}}{\langle I_{\rm e} \rangle^{0.85}}\right)$$

$$\Rightarrow \quad (R_{\rm e})^{\frac{1}{1.3}} = \frac{\sigma_0}{\langle I_{\rm e} \rangle^{0.65}} \quad \Rightarrow \quad \log(R_{\rm e}) = 1.3 \, \log\left(\frac{\sigma_0}{\langle I_{\rm e} \rangle^{0.65}}\right),$$

$$-0.65 \log(R_{
m e}) + 0.22 \langle \mu_{
m e}
angle + 0.86 \log(\sigma_0) = 0.$$
 (11)

$$\log(R_{\rm e}) = 0.34 \langle \mu_{\rm e} \rangle + 1.3 \log(\sigma_0).$$
 (12)

$$\log(R_{\rm e}) = -0.34 \times 2.5 \, \log\langle I_{\rm e} \rangle + 1.3 \, \log(\sigma_0) = \log\left(\frac{\sigma_0^{1.3}}{\langle I_{\rm e} \rangle^{0.85}}\right)$$

$$\Rightarrow \quad (R_{\rm e})^{\frac{1}{1.3}} = \frac{\sigma_0}{\langle I_{\rm e} \rangle^{0.65}} \quad \Rightarrow \quad \log(R_{\rm e}) = 1.3 \, \log\left(\frac{\sigma_0}{\langle I_{\rm e} \rangle^{0.65}}\right),$$

$$-0.65 \log(R_{
m e}) + 0.22 \langle \mu_{
m e}
angle + 0.86 \log(\sigma_0) = 0.$$
 (11)

$$\log(R_{\rm e}) = 0.34 \langle \mu_{\rm e} \rangle + 1.3 \log(\sigma_0).$$
 (12)

$$\log(\textit{R}_{\rm e}) = -0.34 \times 2.5 \, \log\langle\textit{I}_{\rm e}\rangle + 1.3 \, \log(\sigma_0) = \log\left(\frac{\sigma_0^{1.3}}{\langle\textit{I}_{\rm e}\rangle^{0.85}}\right)$$

$$\Rightarrow (R_{\rm e})^{\frac{1}{1.3}} = \frac{\sigma_0}{\langle I_{\rm e} \rangle^{0.65}} \Rightarrow \log(R_{\rm e}) = 1.3 \log\left(\frac{\sigma_0}{\langle I_{\rm e} \rangle^{0.65}}\right),$$

(ロ)、(型)、(E)、(E)、 E) のQの

$$-0.65 \log(R_{
m e}) + 0.22 \langle \mu_{
m e}
angle + 0.86 \log(\sigma_0) = 0.$$
 (11)

$$\log(R_{\rm e}) = 0.34 \langle \mu_{\rm e} \rangle + 1.3 \log(\sigma_0).$$
 (12)

$$\log(\textit{R}_{\rm e}) = -0.34 \times 2.5 \, \log\langle\textit{I}_{\rm e}\rangle + 1.3 \, \log(\sigma_0) = \log\left(\frac{\sigma_0^{1.3}}{\langle\textit{I}_{\rm e}\rangle^{0.85}}\right)$$

$$\Rightarrow \quad (\mathbf{R}_{\rm e})^{\frac{1}{1.3}} = \frac{\sigma_0}{\langle \mathbf{I}_{\rm e} \rangle^{0.65}} \quad \Rightarrow \quad \log(\mathbf{R}_{\rm e}) = 1.3 \, \log\left(\frac{\sigma_0}{\langle \mathbf{I}_{\rm e} \rangle^{0.65}}\right),$$

(ロ)、(型)、(E)、(E)、 E) のQの

Relación Faber-Jackson y plano fundamental galaxias E en el cúmulo de Coma y cúmulos a $z \ge 0.39$ (círculos llenos)

<ロ> < @ > < E > < E > E のQ()

Plano Fundamental: relación D_n - σ_0 Dressler (1987)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Plano Fundamental: relación D_n - σ_0 Dressler (1987)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\langle I_n \rangle = \frac{F\left(\frac{D_n}{2}\right)}{\pi D_n^2/4},$$

$$\langle I_n \rangle = 8 e^{b_4} b_4^{-8} I_e \left(\frac{R_e}{D_n} \right)^2 \gamma \left(8, b_4 \left(\frac{D_n}{R_e} \right)^{\frac{1}{4}} \right) \quad \rightarrow \quad D_n \propto R_e I_e^{0.8}$$

y usando ec.12 y $\langle \mu_e \rangle = -2.5 \log(\langle I_e \rangle) + \text{cte. tenemos que } R_e = \langle I_e \rangle^{-0.85} \sigma_0^{1.3} + \text{cte.},$ con lo cual:

$$D_n \propto \sigma_0^{1.3} \langle I_{
m e}
angle^{-0.05}$$

Plano Fundamental: relación D_n - σ_0 Dressler (1987)

$$\langle I_n \rangle = \frac{F\left(\frac{D_n}{2}\right)}{\pi D_n^2/4},$$

$$\langle I_n \rangle = 8 e^{b_4} b_4^{-8} I_e \left(\frac{R_e}{D_n} \right)^2 \gamma \left(8, b_4 \left(\frac{D_n}{R_e} \right)^{\frac{1}{4}} \right) \quad \rightarrow \quad D_n \propto R_e I_e^{0.8}$$

y usando ec.12 y $\langle \mu_e \rangle = -2.5 \log(\langle I_e \rangle) + \text{cte. tenemos que } R_e = \langle I_e \rangle^{-0.85} \sigma_0^{1.3} + \text{cte.},$ con lo cual:

$$D_n \propto \sigma_0^{1.3} \langle I_e \rangle^{-0.05}.$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ (~)

Cap. 5: Galaxias elípticas

- 2 Sistemas no colisionales
- 3 Distribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
 - 7 Agujeros negros supermasivos centrales

Espectro UV-óptico-IR de una galaxia E

<ロ> < @ > < E > < E > E のQ()

Relación color-luminosidad

Virgo (círculos vacíos) - Coma (círculos llenos)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Relación color-luminosidad

Coma (Bawer et al., 1999)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

э.

Parámetros SSP equivalentes pesados por luminosidad.

Edad vs. dispersión de velocidades de galaxias E en diferentes hambientes. Los valores son SSP equivalentes obtenidos en base a índicies espectrales (Thomas et al. 2010).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Parametros SSP equivalentes pesados por luminosidad.

 $[\alpha/Fe]$ vs. dispersión de velocidades de galaxias E en diferentes hambientes. Los valores son SSP equivalentes obtenidos en base a índicies espectrales (Thomas et al. 2010).

・ コット (雪) ・ (目) ・ (目)

Parametros SSP equivalentes pesados por luminosidad.

[Z/H] vs. dispersión de velocidades de galaxias E en diferentes hambientes. Los valores son SSP equivalentes obtenidos en base a índicies espectrales (Thomas et al. 2010).

Parametros SSP equivalentes pesados por luminosidad.

Tasa de formación estelar en función del tiempo hacia el pasado, para galaxias E de acuerdo a sus masas (Thomas et al. 2010).

Gradientes de edad

・ロト ・ 四ト ・ ヨト ・ ヨト

э.

Virgo (Koleva et al., 2011)

Gradientes de edad normalizados a los valores para el radio efectivo (son valores SSP equivalentes).

Gradientes de edad y metalicidad Virgo (Koleva et al., 2011)

Gradientes de metalicidad normalizados a los valores para el radio efectivo, obtenidos a través de la técnica del ajuste espectral completo (son valores SSP equivalentes).

Edad y Metalicidad central

Virgo (Koleva et al., 2011)

[Fe/H] central (arriba) y log(edad central) (abajo) vs. la magnitud absoluta en el azul (izquierda) y vs. la dispersión de velocidades (derecha).

・ロト・西ト・ヨト・ヨー うへぐ

Gas y polvo NGC 3923 (The Carnegie-Irvine Galaxy Survey)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

5-10% de las galaxias elípticas muestran gas y polvo detectable: se originan en interacciones y fusiones.
Gas y polvo NGC 3923 (Sikkema et al., 2007)

Fig. D.1. Residual image of GALPHOT for NGC 3923 in V with wedge. Note the large dust patch at the NE and faint dust lane within the wedge in the SW direction. The field of view is 202" x 202".

Fig. D.2. Inner region residuals of NGC 3923 in V (40x40 accsec). Several small dust patches are visible. The innermost shell visible was also detected by [Prieur] (1988) using ground based data. No more other inner shells are detected.

5-10% de las galaxias elípticas muestran gas y polvo detectable: se originan en interacciones y fusiones.

Gas y polvo NGC 5128 (≡ radiofuente Cen A)

ヘロト 人間 とくほ とくほ とう

э

Gas y polvo NGC 5128 (≡ radiofuente Cen A)

Gas caliente NGC 5044 (E. O'Sullivan & ESA)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Imagen de la zona central del grupo NGC 5044. Combinación de imágenes óptica del Digitized Sky Survey, e IR y UV de los satélites WISE y Galex de la NASA. Azul: gas caliente observado por XMM-Newton. Purpura: distribución de los átomos de Fe. Verde: emisión en radio proveniente del plasma (Giant Metrewave Radio Telescope).

Gas caliente en galaxias elípticas NGC 4472 (Sarazin 1997).

イロン 不得 とくほ とくほ とうほ

Figure 2. The ROSAT X-ray image of the Virgo elliptical NGC 4472 (Irwin & Sarazin 1996). Contours of the X-ray emission are superposed on a greyscale representation of the optical image.

Gas caliente en galaxias elípticas

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$T_{heat} = \frac{\mu m_{p} \sigma_{*}^{2}}{k_{B}} = 6.8 \times 10^{6} \left(\frac{\sigma_{*}}{300 km \ seg^{-1}}\right)^{2} K$$
$$T \sim 1 - 3 \times 10^{7} \text{ K} \quad \Rightarrow \quad \text{emite en rayos-X (free-free)}$$

E + luminosas: $10^9 - 10^{11} M_{\odot}$ de gas caliente hasta $r \gtrsim 30$ kpc. E - luminosas: no pueden retener gravitatoriamente el gas. Ej.: M 87 emite $10^9 L_{\odot}$ en X.

Gas caliente en galaxias elípticas

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$T_{heat} = rac{\mu m_p \sigma_*^2}{k_B} = 6.8 imes 10^6 \left(rac{\sigma_*}{300 km \ seg^{-1}}
ight)^2 K$$

 $T \sim 1 - 3 imes 10^7 \ \mathrm{K} \quad \Rightarrow \quad ext{emite en rayos-X (free-free)}$

E + luminosas: $10^9 - 10^{11} M_{\odot}$ de gas caliente hasta $r \gtrsim 30$ kpc. E - luminosas: no pueden retener gravitatoriamente el gas. Ej.: M 87 emite $10^9 L_{\odot}$ en X.

Gas caliente en galaxias elípticas

$$\mathcal{L} = n_{\rm e} \, n_{\rm p} \, \Lambda(T) \tag{13}$$

$$t_{\rm cool} \approx \frac{\frac{3}{2} \left(n_{\rm e} + n_{\rm p} \right) k_B T}{n_{\rm e} n_{\rm p} \Lambda(T)}.$$
 (14)

 $n_{\rm e}$ y $n_{\rm p}$ son las densidades de electrones y protones.

 $\Lambda(T)$ es la función de enfriamiento.

Para radiación libre-libre resulta ser $t_{cool} \propto n_e^{-1} T^{\frac{1}{2}} \rightarrow$ en la zona central de las E el enfriamiento es eficiente!

Cap. 5: Galaxias elípticas

- 2 Sistemas no colisionales
- 3 Distribución de brillo superficial
- 4 Cinemática
- 5 El plano fundamental
- 6 Poblaciones estelares y material interestelar
- 7 Agujeros negros supermasivos centrales

Curva de rotación de M87

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Curva de rotación de NGC 4258

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Relación $\mathcal{M}_{\bullet} - \mathcal{M}_{sph}$

・ロト・日本・日本・日本・日本・日本

Bibliografía del capítulo:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Galaxies in the Universe: An Introduction, Linda S. Sparke & John S. Gallagher III (Cambridge University Press, 2nd. Edition, 2000).
- Galactic Astronomy,

J. Binney & M. Merrifield (Princeton University Press, 1998).